• 제목/요약/키워드: Calcium Phosphate Cement

검색결과 53건 처리시간 0.025초

휘스커상을 함유한 수산화아파타이트시멘트 경화체의 미구조-강도 특성 (Microstructure and Mechanical Strength of Hardened Paste of Hydroxyapatite Cement Containing Whisker Phase)

  • 손영도;송태웅
    • 한국세라믹학회지
    • /
    • 제36권12호
    • /
    • pp.1342-1349
    • /
    • 1999
  • In order to improve the density and the mechanical strength without change in chemical composition the hardened pastes of hydroxyapatite cement were reinforced with powders and/or whiskers of hydroxyapatite. The powders behaved as a seed of hydroxyapatite formation rather than a filler while the whiskers were mrerly dispersed in matrix and capillary pores of the hardened bodies leading to increase in mechanical strength. But the increase in strength But the increase in strength was nnt enough owing to the lack of homogeneous dispersion of the fibers. The highest diametral tensile strength of 18.5 MPa was measured at the hardened hydroxyapatite body in which well-dispersed whisker phase formed uniformly during hydro-thermal curing of power-added and dry-formed hydroxyapatite cement.

  • PDF

석고와 슬래그를 첨가한 Active-Belite Cement의 수화특성 (Hydration of Active-Belite Cement with Gypsum and Slag)

  • 이성호;박동철;김남호;최상홀
    • 한국세라믹학회지
    • /
    • 제35권4호
    • /
    • pp.339-346
    • /
    • 1998
  • Active belite cement clinkers were synthsized by using natural raw materials with borax and calcium phosphate ({{{{ {Ca }_{3 }( {PO}_{4}) }}2) In both case {{{{alpha ^、 {C }_{2 }S }} were formed but borax was more efficient. The cement syn-thesized with the addition of borax was hydrated with the addition of anhydrite(5 wt%) and slag(30wt%, 40wt% 50wt%) The addition of 50wt% slag with anhydrite was good for strength development in 7days and the compressive strength was developed to twice than no addition of slag at 28 days strength.

  • PDF

Hardening and Hydroxyapatite Formation of Bioactive Cement Prepared from Calcium Phosphosilicate Glass

  • Kim, Cheol-Young;Park, Sang-Jong
    • The Korean Journal of Ceramics
    • /
    • 제1권3호
    • /
    • pp.131-136
    • /
    • 1995
  • It has been reported that the biocement obtained by mixing $CaO-SiO_2-P_2O_5$ glass powders with ammonium phosphate solution has biocompatibility as will as high strength. The hardening mechanism and hydroxyapatite forming mechanism were discussed when $53.6%CaO_1,\; 38.1%SiO_2,\; 7.7P_2O_6,\; 0.6%CaF_2$(mole %) glass powder was reacted with ammonium phosphate solution and reacted in tris-buffer solution, respectively. High strength hardened biocement was obtained for the specimen with $CaNH_4PO_4\;H_2O$ crystal when the glass powder was mixed with ammonium phosphate solution, and hydroxyapatite crystal was rapidly formed only in the sample with $CaNH_4PO_4\;H_2O$ crystal when it was reacted in tris-buffer solution.

  • PDF

Interface between calcium silicate cement and adhesive systems according to adhesive families and cement maturation

  • Nelly Pradelle-Plasse;Caroline Mocquot;Katherine Semennikova;Pierre Colon;Brigitte Grosgogeat
    • Restorative Dentistry and Endodontics
    • /
    • 제46권1호
    • /
    • pp.3.1-3.14
    • /
    • 2021
  • Objectives: This study aimed to evaluate the interface between a calcium silicate cement (CSC), Biodentine and dental adhesives in terms of sealing ability. Materials and Methods: Microleakage test: 160 standardized class II cavities were prepared on 80 extracted human molars. The cavities were filled with Biodentine and then divided into 2 experimental groups according to the time of restoration: composite resin obturation 15 minutes after Biodentine handling (D0); restoration after 7 days (D7). Each group was then divided into 8 subgroups (n = 5) according to the adhesive system used: etch-and-rinse adhesive (Prime & Bond); self-etch adhesive 2 steps (Optibond XTR and Clearfil SE Bond); self-etch adhesive 1 step (Xeno III, G-aenial Bond, and Clearfil Tri-S Bond); and universal used as etch-and-rinse or self-etch (ScotchBond Universal ER or SE). After thermocycling, the teeth were immersed in a silver nitrate solution, stained, longitudinally sectioned, and the Biodentine/adhesive percolation was quantified. Scanning electron microscopic observations: Biodentine/adhesive interfaces were observed. Results: A tendency towards less microleakage was observed when Biodentine was etched (2.47%) and when restorations were done without delay (D0: 4.31%, D7: 6.78%), but this was not significant. The adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate monomer showed the most stable results at both times studied. All Biodentine/adhesive interfaces were homogeneous and regular. Conclusions: The good sealing of the CSC/adhesive interface is not a function of the system adhesive family used or the cement maturation before restoration. Biodentine can be used as a dentine substitute.

PHILOS plate fixation with polymethyl methacrylate cement augmentation of an osteoporotic proximal humerus fracture

  • Kim, Do-Young;Kim, Tae-Yeong;Hwang, Jung-Taek
    • Clinics in Shoulder and Elbow
    • /
    • 제23권3호
    • /
    • pp.156-158
    • /
    • 2020
  • PHILOS plate fixation in osteoporotic proximal humerus fracture of old age is well-known for high complication rate, especially metal failure, providing various augmentation techniques, such as calcium phosphate cement, allogenous or autologous bone graft. We report a case of polymethyl methacrylate augmentation to provide appropriate reduction with a significant mechanical support. This can be a treatment option for displaced unstable osteoporotic proximal humerus fracture with marked bony defect.

Characterizations of High Early-Strength Type Shrinkage Reducing Cement and Calcium Sulfo-aluminate by Using Industrial Wastes

  • Lee, Keon-Ho;Nam, Seong-Young;Min, Seung-Eui;Lee, Hyoung-Woo;Han, Choon;Ahn, Ji-Whan
    • 한국세라믹학회지
    • /
    • 제53권2호
    • /
    • pp.215-221
    • /
    • 2016
  • In this study, the utilization of the by-products of various industries was examined using raw materials of CSA high-functional cement such as coal bottom ash, red mud, phosphate gypsum, etc. Technology to improve energy efficiency and reduce $CO_2$ was developed as part of the manufacturing process; this technology included lower temperature sintering ($150{\sim}200^{\circ}C$) than is used in the OPC cement manufacturing process, replacement of CSA cement with the main raw material bauxite, and a determination of the optimum mix condition. In order to develop CSA cement, a manufacturing system was established in the Danyang plant of the HANIL Cement Co. Ltd., in Korea. About 4,200 tons of low purity expansion agent CSA cement (about 16%) and about 850 tons of the lime-based expansion agent dead burned lime (about 8%) were produced at a rate of 60 tons per hour at the HANIL Cement rotary kiln. To improve the OPC cement properties, samples of 10%, 13%, and 16% of CSA cement were mixed with the OPC cement and the compressive strength and length variation rate of the green cement were examined. When green cement was mixed with each ratio of CSA cement and OPC cement, the compressive strength was improved by about 30% and the expansibility of the green cement was also improved. When green cement was mixed with 16% of CSA cement, the compressive strength was excellent compared with that of OPC cement. Therefore, this study indicates the possibility of a practical use of low-cost CSA cement employing industrial wastes only.

경화액의 농도와 온도가 인산칼슘시멘트의 유변학적 성질에 미치는 영향에 관한 연구 (The Effect of Temperature and Concentration of Setting Solution on the Rheological Properties of Injectable Calcium Phosphate)

  • 유현미;장석우;박동성
    • 구강회복응용과학지
    • /
    • 제25권1호
    • /
    • pp.73-82
    • /
    • 2009
  • 인산칼슘시멘트(calcium phosphate cement)는 우수한 생체친화성 및 골전도성을 가지고 있어 골이식재로 많이 사용되어 왔다. 인산칼슘시멘트의 중요한 물성 중 하나인 흐름성은 유변학적 성질을 측정하여 확인할 수 있지만, 인산칼슘시멘트의 유변학적 성질에 관한 연구는 많이 진행되어 있지 않다. 이 실험의 목적은 인산칼슘시멘트를 hydroxyprophyl methylcellulose (HPMC) 수용액 및 polyacrylic acid (PAA) 수용액과 각각 혼합하여 주사용 인산칼슘시멘트를 만들고, 각각의 용액의 농도(35%와 17.5%의 HPMC, 2%와 1%의 PAA)와 온도($25^{\circ}C$ and $37^{\circ}C$)가 유변학적 성질에 미치는 영향을 연구하기 위한 것이다. 실험에 사용된 인산칼슘시멘트는 dicalcium phosphate dihydrate (DCPD)이며 유변학적 성질은 자동화된 rheometer를 사용하여 측정하였다. 통계분석은 Mann-whitney test를 사용하였다. 높은 농도의 경화액과 혼합된 인산칼슘시멘트는 (35% HPMC와 2% PAA)는 낮은 농도의 경화액과 혼합된 인산칼슘시멘트 (17.5% HPMC와 1% PAA)보다 각각 유의성 있게 높은 점도를 보였다. HPMC 수용액과 혼합된 인산칼슘시멘트는 $37^{\circ}C$에서 $25^{\circ}C$보다 유의성 있게 높은 점도를 보였다. PAA 수용액과 혼합된 인산칼슘시멘트는 $37^{\circ}C$에서 $25^{\circ}C$보다 낮은 점도를 보였으나 통계적 유의성은 없었다. 또한 실험에 사용된 모든 종류의 인산칼슘시멘트는 의사가소성(pseudoplastic)을 보였다.

Microstructure and Biocompatibility of Porous BCP(HA/β-TCP) Biomaterials Consolidated by SPS Using Space Holder

  • Woo, Kee-Do;Kwak, Seung-Mi;Lee, Tack;Oh, Seong-Tak;Woo, Jeong-Nam
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.449-453
    • /
    • 2016
  • $HA(hydroxyapatite)/{\beta}-TCP$ (tricalcium phosphate) biomaterial (BCP; biphasic calcium phosphate) is widely used as bone cement or scaffolds material due to its superior biocompatibility. Furthermore, $NH_4HCO_3$ as a space holder (SH) has been used to evaluate feasibility assessment of porous structured BCP as bone scaffolds. In this study, using a spark plasma sintering (SPS) process at 393K and 1373K under 20MPa load, porous $HA/{\beta}-TCP$ biomaterials were successfully fabricated using $HA/{\beta}-TCP$ powders with 10~30 wt% SH, TiH2 as a foaming agent, and MgO powder as a binder. The effect of SH content on the pore size and distribution of the BCP biomaterial was observed by scanning electron microscopy (SEM) and a microfocus X-ray computer tomography system (SMX-225CT). The microstructure observations revealed that the volume fraction of the pores increased with increasing SH content and that rough pores were successfully fabricated by adding SH. Accordingly, the cell viabilities of BCP biomaterials were improved with increasing SH content. And, good biological properties were shown after assessment using Hanks balanced salt solution (HBSS).

Effect of casein phosphopeptide-amorphous calcium phosphate on fluoride release and micro-shear bond strength of resin-modified glass ionomer cement in caries-affected dentin

  • Agob, Jamila Nuwayji;Aref, Neven Saad;Al-Wakeel, Essam El Saeid
    • Restorative Dentistry and Endodontics
    • /
    • 제43권4호
    • /
    • pp.45.1-45.11
    • /
    • 2018
  • Objectives: This study was conducted to evaluate fluoride release and the micro-shear bond strength of resin-modified glass ionomer cement (RMGIC) in casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-remineralized caries-affected dentin (CAD). Materials and Methods: Exposed dentin surfaces of 30 human third molar teeth were divided into 2 equal groups for evaluating fluoride release and the micro-shear bond strength of RMGIC to CAD. Each group was subdivided into 3 equal subgroups: 1) control (sound dentin); 2) artificially demineralized dentin (CAD); 3) CPP-ACP remineralized dentin (remineralized CAD). To measure fluoride release, 15 disc-shaped specimens of RMGIC (4 mm in diameter and 2 mm in thickness) were bonded on one flat surface of the dentin discs of each group. Fluoride release was tested using ion chromatography at different intervals; 24 hours, 3, 5, 7 days. RMGIC micro-cylinders were built on the flat dentin surface of the 15 discs, which were prepared according to the assigned group. Micro-shear bond strength was measured after 24 hours water storage. Data were analyzed using 1- and 2-way analysis of variance and the post hoc least significant difference test (${\alpha}=0.05$). Results: Fluoride detected in solutions (at all intervals) and the micro-shear bond strength of RMGIC bonded to CPP-ACP-remineralized dentin were significantly higher than those bonded to artificial CAD (p < 0.05). Conclusions: Demineralized CAD consumes more fluoride released from RMGIC into the solution for remineralization than CPP-ACP mineralized dentin does. CPP-ACP increases the micro-shear bond strength of RMGIC to CAD.