DOI QR코드

DOI QR Code

Microstructure and Biocompatibility of Porous BCP(HA/β-TCP) Biomaterials Consolidated by SPS Using Space Holder

  • Woo, Kee-Do (Division of Advanced Material Engineering & RCAMD, Chonbuk National University) ;
  • Kwak, Seung-Mi (Division of Advanced Material Engineering & RCAMD, Chonbuk National University) ;
  • Lee, Tack (Division of Advanced Material Engineering & RCAMD, Chonbuk National University) ;
  • Oh, Seong-Tak (Division of Advanced Material Engineering & RCAMD, Chonbuk National University) ;
  • Woo, Jeong-Nam (College of Veterinary Medicine, Chonbuk National University, National Institute of Food and Drug Safety Evaluation)
  • Received : 2016.05.12
  • Accepted : 2016.07.25
  • Published : 2016.08.27

Abstract

$HA(hydroxyapatite)/{\beta}-TCP$ (tricalcium phosphate) biomaterial (BCP; biphasic calcium phosphate) is widely used as bone cement or scaffolds material due to its superior biocompatibility. Furthermore, $NH_4HCO_3$ as a space holder (SH) has been used to evaluate feasibility assessment of porous structured BCP as bone scaffolds. In this study, using a spark plasma sintering (SPS) process at 393K and 1373K under 20MPa load, porous $HA/{\beta}-TCP$ biomaterials were successfully fabricated using $HA/{\beta}-TCP$ powders with 10~30 wt% SH, TiH2 as a foaming agent, and MgO powder as a binder. The effect of SH content on the pore size and distribution of the BCP biomaterial was observed by scanning electron microscopy (SEM) and a microfocus X-ray computer tomography system (SMX-225CT). The microstructure observations revealed that the volume fraction of the pores increased with increasing SH content and that rough pores were successfully fabricated by adding SH. Accordingly, the cell viabilities of BCP biomaterials were improved with increasing SH content. And, good biological properties were shown after assessment using Hanks balanced salt solution (HBSS).

Keywords

References

  1. A. Amir, B. S. Abu, M. Norhamidi, S. Junaidi and I. R. Mohd, Mater. Des., 55, 165 (2014). https://doi.org/10.1016/j.matdes.2013.09.045
  2. L. L. Hench, J. Am. Ceram. Soc., 81, 1705 (1998).
  3. K. Elayaraja, V. Sarath Chandra, M. I. Ahymah Joshy, R. V. Sunganthi, K. Asokan and S. Narayana Kalkura, Appl. Surf. Sci., 274, 203 (2013). https://doi.org/10.1016/j.apsusc.2013.03.016
  4. X. Yang, X. Lu, Q. Zhang, X. Zhang, Z. Gu and J. Chen, Mater. Sci. Eng. C, 27, 781 (2007). https://doi.org/10.1016/j.msec.2006.08.011
  5. D. M. Roy and S. K. Linnehan, Nature, 247, 220 (1974). https://doi.org/10.1038/247220a0
  6. D. Tadic, F. Beckmann, K. Schwarz and M. Epple, Biomater., 25, 3335 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.007
  7. S. Aoki, S. Yamaguchi, A. Nakahira and K. Suganuma, J. Ceram. Soc. Jap., 112, 193 (2004). https://doi.org/10.2109/jcersj.112.193
  8. S. H. Li, J. R. D. Wijin, P. Layrolle and K. D. Groot, J. Am. Ceram. Soc., 86, 65 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03279.x
  9. S. M. Sharif, Z. A. Ahmad and M. R. Othman, Int. J. Sci. Technol. Res., 2, 282 (2013).
  10. P. Feng, M. Niu, C. Gao, S. Peng and C. Shuai, Sci. Rep., 4, 5599 (2014).
  11. Y. W. Gu, M. S. Yong, B. Y. Tay and C. S. Lim, Mater. Sci. Eng. C, 29, 1515 (2009). https://doi.org/10.1016/j.msec.2008.11.003
  12. A. Arifin, A. B. Sulong, N. Muhamad, J. Syarif and M. I. Ramli, Mater. Des., 55, 165 (2014). https://doi.org/10.1016/j.matdes.2013.09.045
  13. L. Zhang and T. J. Webster, Nano Today, 4, 66 (2009). https://doi.org/10.1016/j.nantod.2008.10.014
  14. R. Zhang and P. X. Ma, J. Biomed. Mater. Res., 45, 285 (1999). https://doi.org/10.1002/(SICI)1097-4636(19990615)45:4<285::AID-JBM2>3.0.CO;2-2
  15. S. Yamada, D. Heymann, J. M. Bouler and G. Daculsi, Biomater., 18, 1037 (1997). https://doi.org/10.1016/S0142-9612(97)00036-7