• Title/Summary/Keyword: Calcium Channels

Search Result 236, Processing Time 0.028 seconds

Modulation of Cloned T-type Calcium Channels

  • Jeong, Seong-Woo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.20-21
    • /
    • 2002
  • The inflow of Ca$\^$2+/ through voltage-activated T-type calcium channels (T-channels) regulates a variety of cellular functions including neuronal excitability, cardiac pacemaker activity, hormone secretion, smooth muscle contraction, and fertilization. Not only are T-channels enormously important for the normal operation of cells, they also playa critical role in pathophysiological conditions such as cardiac hypertrophy and absence epilepsy.(omitted)

  • PDF

Effect of bay K 8644, A Calcium Channel Agonist, on Dog Cardiac Muscarinic Receptors

  • Lee, Shin-Woong;Park, Young-Joo;Lee, Jeung-Soo
    • Archives of Pharmacal Research
    • /
    • v.14 no.3
    • /
    • pp.271-278
    • /
    • 1991
  • To investigate further whether the effects of the dihydropyridine (DHP) drugs on calcium channels are related to those of these drugs on muscarinic receptors, the binding characteristics of the DHP calcium channel agonist, Bay K 8644, on muscarinic receptors and calcium channels were compared to those of the DHP calcium channel antagonists, nicardipine and nimodipine in the dog cardiac sarcolemma. Bay K 8644, nicardipine and nimodipine inhibited the specific $[^3H]$QNB binding with $K_i$ values of 16.7\mu{M}$, 3.5\mu{M}$ and 15.5\mu{M}$ respectively. Saturation data of $[^3H]$QNB binding with $K_i$ VALUES OF 16.7\mu{M}$ 3.5\mu{M}$ and 15.5\mu{M}$ respectively. Saturation data of $[^3H]$QNB binding in the presence of these DHP drugs showed this inhibition to be competitive. Bay K 8644, like nicardipine and nimodipine, blocked the binding of $[^3H]$nitrendipine to the high affinity DHP binding sites, but atropine did not, indicating that the muscarinic receptors and the DHP binding sites m but atropine did not, indicating that the muscarinic receptors and the DHP bindings sites on calcium channels are distinct. The $K_i$ value of Bay K 8644 for the DHP binding sites was 4nM. Nicardipine and nimodipine $(K_i:0.1-0.2\;nM)$ were at least 20 times more potent than Bay K 8644 in inhibiting $[^3H]$ nitrendipine binding. Thus, the muscarinic receptors were about 4000 times less sensitive than thes high afinity DHP binding sites to Bay K 8644. These results suggest that the DHP calcium agonist Bay K 8644 binds directly to the muscarinic receptors but its interaction with the muscarinic receptors is not related to its binding to the DHP binding sites on calcium channels.

  • PDF

Haloperidol Induces Calcium Ion Influx Via L-Type Calcium Channels in Hippocampal HN33 Cells and Renders the Neurons More Susceptible to Oxidative Stress

  • Kim, Hyeon Soo;Yumkham, Sanatombi;Choi, Jang Hyun;Kim, Eung-Kyun;Kim, Yong Sik;Ryu, Sung Ho;Suh, Pann-Ghill
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.51-57
    • /
    • 2006
  • Haloperidol is a classical neuroleptic drug that is still in clinical use and can lead to abnormal motor activity following repeated administration. However, there is little knowledge of how it triggers neuronal impairment. In this study, we report that it induced calcium ion influx via L-type calcium channels and that the elevation of calcium ions induced by haloperidol appeared to render hippocampal cells more susceptible to oxidative stress. Indeed, the level of cytotoxic reactive oxygen species (ROS) and the expression of pro-apoptotic Bax increased in response to oxidative stress in haloperidol-treated cells, and these effects were inhibited by verapamil, a specific L-type calcium channel blocker, but not by the T-type calcium channel blocker, mibefradil. These findings indicate that haloperidol induces calcium ion influx via L-type calcium channels and that this calcium influx influences neuronal fate.

Docosahexaenoic acid reduces adenosine triphosphate-induced calcium influx via inhibition of store-operated calcium channels and enhances baseline endothelial nitric oxide synthase phosphorylation in human endothelial cells

  • Vu, Thom Thi;Dieterich, Peter;Vu, Thu Thi;Deussen, Andreas
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.345-356
    • /
    • 2019
  • Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, $100{\mu}M$) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to $50{\mu}M$. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated $Ca^{2+}$-transient. This effect was preserved in the presence of BAPTA (10 and $20{\mu}M$) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane ($75{\mu}M$) to inhibit store-operated calcium channel or thapsigargin ($2{\mu}M$) to delete calcium store. In addition, DHA ($12{\mu}M$) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a $Ca^{2+}$ activated mode to a preferentially controlled phosphorylation mode.

Purinergic-mediated Calcium Homeostasis and Dopamine R~lease in PC 12 Cells: Effect of Ethanol

  • Kim, Won-Ki
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1997.07a
    • /
    • pp.16-16
    • /
    • 1997
  • Extracelluar ATP evokes many biological processes, including neuronal excitation and neurotransmitter secretion, through activation of purinergic P2 receptors. Although excitatory and inhibitory receptor-operated channels (ROC) and voltage-dependent calcium channels (VDCC) have been reported to be altered by acute and chronic exposure to ethanol, little is known of the ethanol effects on purinergic receptor-operated channels in neuronal cells.(omitted)

  • PDF

Ca2+-regulated ion channels

  • Cox, Daniel H.
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.635-646
    • /
    • 2011
  • Due to its high external and low internal concentration the $Ca^{2+}$ ion is used ubiquitously as an intracellular signaling molecule, and a great many $Ca^{2+}$-sensing proteins have evolved to receive and propagate $Ca^{2+}$ signals. Among them are ion channel proteins, whose $Ca^{2+}$ sensitivity allows internal $Ca^{2+}$ to influence the electrical activity of cell membranes and to feedback-inhibit further $Ca^{2+}$ entry into the cytoplasm. In this review I will describe what is understood about the $Ca^{2+}$ sensing mechanisms of the three best studied classes of $Ca^{2+}$-sensitive ion channels: Large-conductance $Ca^{2+}$-activated $K^+$ channels, small-conductance $Ca^{2+}$-activated $K^+$ channels, and voltage-gated $Ca^{2+}$ channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.

Characterization of Voltage-Sensitive Calcium Channels and Insulin Secretion and the effect of 4,4'-Dichlorobiphenyl in RINm5f cells

  • Lee, Ihn-Soon;Hur, Eun-Mi;Sungkwon Chung;Kim, Kyong-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.47-47
    • /
    • 2001
  • Opening of $Ca^{2+}$ -channels represents the final common pathway for insulin secretion in pancreatic beta-cells and related cell lines. We investigated voltage-sensitive calcium channels (VSCCs) and insulin secretion in RINm5F, an insulinoma cell line derived from rat pancreatic beta-cells. Several types of VSCCs were identified in RINm5f cells: dihydropyridine-sensitive L-type, $\omega$-conotoxin GVIA-sensitive N-type, $\omega$-agatoxin IVA-sensitive P-type channels, and $\omega$-conotoxin MVIIC sensitive Q-type channels.(omitted)

  • PDF

The Effect of Papaverine on the Calcium-dependent $K^+$ Current in Rat Basilar Smooth Muscle Cells

  • Bai, Guang-Yi;Cho, Jae-Woo;Han, Dong-Han;Yang, Tae-Ki;Gwak, Yong-Geun;Kim, Chul-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.5
    • /
    • pp.375-379
    • /
    • 2005
  • Objective : Papaverine has been used in treating vasospasm following subarachnoid hemorrhage[SAH]. However, its action mechanism for cerebral vascular relaxation is not clear. Potassium channels are closely related to the contraction and relaxation of cerebral smooth muscle. Therefore, to identify the role of potassium and calcium channels in papaverine-induced vascular relaxation, we examine the effect of papaverine on potassium channels in freshly isolated smooth muscle cells from rat basilar artery. Methods : The isolation of rat basilar smooth muscle cells was performed by special techniques. The whole cell currents were recorded by whole cell patch clamp technique in freshly isolated smooth muscle cells from rat basilar artery. Papaverine was added to the bath solution. Results : Papaverine of $100{\mu}M$ into bath solution increased the amplitude of the outward $K^+$ current which was completely blocked by BKCa[large conductance calcium dependent potassium channels]blocker, IBX[iberiotoxin], and calcium chealator, BAPTA[l,2-bis[o-aminophenoxy]ethane-N,N,N',N'-tetraacetic acid], in whole cell mode. Conclusion : These results strongly suggest that potassium channels may play roles in papaverine-induced vascular relaxation in rat basilar artery.