• Title/Summary/Keyword: Calcination furnace

Search Result 23, Processing Time 0.023 seconds

Effects of Physicochemical/Mineralogical Characteristics of Limestones and Porosity after Calcination on Desulfurization Reactivities

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Cho, Kye-Hong;Han, Choon
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.34-42
    • /
    • 2016
  • Characteristics of wet flue gas desulfurization and in-furnace desulfurization of domestic and overseas limestone with different crystallinity and crystalline size are studied in this article. Properties of desulfurization were evaluated in relation to physicochemical/ mineralogical characteristics, degree of pore formation for different calcination temperatures and TNC(total neutralizing capability). TNC of domestic high crystalline limestone was lower than that of overseas one. On the other hand, the porosity after calcination was shown to be relatively high for domestic limestone, which had high initial rates of desulfurization reactions in-furnace. Based on low pore formation and porosity with high TNC of crystalline high-Ca limestones compared to macrocrystalline ones, the former are preferred for wet desulfurization processes.

Analysis of the Effect of Particle Size and Humidity on Reaction Characteristics of $CaCO_3$ Sorbent Particle under Air and $O_2/CO_2$ Atmospheric Conditions (공기연소 분위기와 순산소 연소 분위기에서 입자 크기와 습도가 $CaCO_3$ 흡착제 입자의 반응특성에 미치는 영향 분석)

  • Jeong, Seongha;Lee, Kang Soo;Keel, Sangin;Yun, Jin Han;Kim, Sang Soo
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • It is necessary to find out the reaction characteristics of $CaCO_3$ sorbent particles in air and $O_2/CO_2$ atmospheric conditions in order that an in-furnace desulfurization technique can be applied to oxy-fuel combustion system. In this study, rate of change of GMD(geometric mean diameter) and specific surface area of $CaCO_3$ sorbent particles reacted in DTF(drop tube furnace) experimental setup were analyzed to investigate the effect of particle size and humidity on the reaction characteristics of them. In air atmospheric condition, calcination process occurs actively within shorter residence times as the particle size increases. On the contrary, in $O_2/CO_2$ atmospheric condition, a calcination process is delayed as particle size increases. The increment of humidity accelerates calcination process in an air atmospheric condition and increase rate of calcination in an $O_2/CO_2$ atmospheric condition.

Compressive Strength of Cement mortar Admixed with Waste Phosphogypsum Calcination with various Temperature (하소 온도가 다른 페인산석고를 혼입한 시멘트 모르타르의 압축강도 특성)

  • An Yang Jin;Yoon Seong Jin;Mun Kyoung Ju;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.228-231
    • /
    • 2004
  • The purpose of this study evaluates possibilities of waste phosphogypsum into concrete by steam curing admixture. The waste phosphogypsums were classified into 4 forms(Dihydrate, $\beta-Hemihydrate$, III-Anhydrite and II-Anhydrite) which were changed to in low temperature of calcination. Also, various admixtures were made of waste phosphogypsum(PG) and pozollanic fine powderers (Fly-ash, Blast Furnace Slag), and the basic properties of the cement mortars incorporating with these admixtures were examined and analyzed under a verity of experimental conditions. As a result, III-Anhydrite, these is similar to II-Anhydrite from compressive strength and are great in the effect of strength improvement. also, it was proved that specimens made on type III-Anhydrite of waste phosphogypsum and blast furnace slag increased on the compressive strength of cement mortar. Therefore, III-Anhydrite phosphogypsum calcined at lower temperature could be used as steam curing admixture for concrete 2th production.

  • PDF

Thermo-Chemical Analysis of a Calcination Furnace to Produce Cathode Material for the Secondary Batteries (이차전지 양극활물질 제조용 소성로의 열화학적 해석)

  • Hwang, Min-Young;Kim, Yong-Gyun;Jeon, Chung-Hwan;Song, Ju-Hun;Kim, Yong-Tae;Chang, Youn-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Lithium secondary batteries have been widely used in the portable electric devices as power source. Recently it is expected that the realm of its applications expands to the markets such as energy storage medium of hybrid electric vehicle(HEV), electric vehicle(EV). Cathode active material is crucial in terms of performance, durability, capacity of lithium secondary batteries. It is urgent to develope the technology for mass production of cathode material to cope with the markets' demands in the near future. In this study, a calcination furnace running in real production line is modelled in 3D, and the thermal flow and gas flow after chemical reaction in the furnace is analyzed through numerical computations. Based on the results, it is shown that large volume of $CO_2$ gas is generated from chemical reaction. High concentration of $CO_2$ gas and it's stagnation is clearly found from the reactant containers in which the reaction occur to the bottom area of the furnace. It is also studied that 15% or more $CO_2$ mol fraction could affect to proper formation of $LiCoO_2$ through TGA-DSC analysis. The solutions to evacuate carbon dioxide from the furnace are suggested through the change of furnace design and operating condition as well.

Study on Calcination Characteristics of Limestones for In-Furnace Desulfurization in Oxy-Fuel Combustion (순산소연소 조건에서 석회석의 소성특성 및 로내탈황에 관한 연구)

  • An, Young-Mo;Jo, Hang-Dae;Choi, Won-kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2009
  • In oxy-fuel combustion, $CO_2$ concentration in the flue gas may be enriched up to 95% owing to the gas recirculation. Under the high $CO_2$ concentration, the calcination characteristic of limestone is different from that of the conventional air combustion system. In this study, three types of limestone taken from different regions in Korea were used as $SO_2$ absorbent and their calcination characteristics depending on calcination temperature were investigated. The experiments were performed to examine the effects of operating variables such as absorbent species, reaction temperatures on the $SO_2$ removal efficiency and reacted limestone particles were captured to examine the sulfur contents. The degree of calcination and the specific surface area increased with calcination temperature and $SO_2$ removal efficiency increased with reaction temperature. The results showed remarkable difference in $SO_2$ removal efficiencies between the limestone types. The sulfur content of the reacted limestone with the highest $SO_2$ removal efficiency was about 10%.

Continuous Slot-die coating & Calcination process for long length MOD-YBCO coated conductors (연속 슬롯-다이 코팅 및 하소공정을 이용한 MOD-YBCO 초전도 선재 제조)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • The slot-die coating & calcination process was adopted to fabricate the long YBCO precursor films on the buffered metal tape for the $2^{nd}$ generation coated conductors. To obtain the smooth and crack-free surface of long YBCO precursor films, the parameters of slot-die coating and the process variables of calcination step must be optimized simultaneously in reel-to-reel method. Among the parameter of slot-die coating process, the viscosities of the precursor solution was controlled from 60cP to 200cP to obtain the thicker films from on single coating. The slot-die gap, the injection rate of precursor solution, the moving speed of buffered metal tape etc. are controlled lot the full coverage and smooth surface of YBCO precursor films. The slot-die coated films are moved through the tube furnace with predetermined heating profiles in humid oxygen ambient The YBCO precursor films was identifed with $Y_2O_3,\;BaF_2$, and CuO phase by XRD and consisted of fine grains of about 20nm size observed by FE-SEM. The YBCO films show the critical current density over $MA/cm^2$ using the precursor films formed by the continuous slot-die coating & calcination process.

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

Pozzolanicity of Calcined Sewage Sludge with Calcination and Fineness Conditions (소성조건 및 분말도에 따른 소성하수슬러지(CSS)의 포졸란 특성)

  • So, Hyoung-Seok;So, Seung-Young;Khulgadai, Janchivdorj;Kang, Jae-Hong;Lee, Min-Hi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • This study discussed the pozzolanic properties of calcined sewage sludge (CSS) according to calcination and fineness conditions. The chemical and mineralogical analysis of CSS according to calcination temperature and time were carried out and compared with that of the existing pozzolanic materials such as fly-ash, blast furnance slag and meta-kaolin. Various mortars were made by mixing those CSS and $Ca(OH)_2$ (1:1 wt. %), and their compressive strength and hydrates according to experimental factors such as fineness of CSS and curing age were also investigated in detail. The results show clearly the potentiality of calcined sewage sludge (CSS) as an admixture materials in concrete, but the CSS should be controlled by calcination temperature and time, and fineness etc. In this experimental condition, the calcination temperature of $800^{\circ}C$, calcination time of 2 hours and fineness of $5,000cm^2/g$ were optimum conditions in consideration of the mechanical properties and economic efficiency of CSS. The compressive strength of CSS mortars was higher than that of fly-ash mortars and blast furnace slag mortars, especially at the early ages. Then, the utilization of CSS in construction fields was greatly expected.

The Properties of Synthetic Calcium Ferrite for Ironmaking and Steelmaking using Industrial By-products - (1) (산업부산물을 활용한 제철·제강용 합성 칼슘 페라이트 특성 - (1))

  • Park, Soo Hyun;Chu, Yong Sik;Seo, Sung Kwan;Park, Jae Wan
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.3-11
    • /
    • 2014
  • Calcium ferrite is more effective binder for making sintered ore and flux for steel making because of it's low melting temperature. In this Study, calcium ferrite was made by calcinating method in the cement manufacturing process in order to reduce manufacturing costs and increase productivity. Limestone and calcination sludge were used as CaO source, steelmaking sludge, blast furnace dust and iron ore were used as Fe-bearing raw materials. The sintering temperature of specimens is in the range of $950{\sim}1170^{\circ}C$. For Calcium ferrite can be used 'binder for making sintered ore' or 'flux for converter/electric furnace' with a low melting point properties, the raw material characteristics and sintering properties were investigated.