• 제목/요약/키워드: Calabi invariant

검색결과 3건 처리시간 0.013초

GRAPHICALITY, C0 CONVERGENCE, AND THE CALABI HOMOMORPHISM

  • Usher, Michael
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2043-2051
    • /
    • 2017
  • Consider a sequence of compactly supported Hamiltonian diffeomorphisms ${\phi}_k$ of an exact symplectic manifold, all of which are "graphical" in the sense that their graphs are identified by a Darboux-Weinstein chart with the image of a one-form. We show by an elementary argument that if the ${\phi}_k$ $C^0$-converge to the identity, then their Calabi invariants converge to zero. This generalizes a result of Oh, in which the ambient manifold was the two-disk and an additional assumption was made on the Hamiltonians generating the ${\phi}_k$. We discuss connections to the open problem of whether the Calabi homomorphism extends to the Hamiltonian homeomorphism group. The proof is based on a relationship between the Calabi invariant of a $C^0$-small Hamiltonian diffeomorphism and the generalized phase function of its graph.

CONTINUOUS HAMILTONIAN DYNAMICS AND AREA-PRESERVING HOMEOMORPHISM GROUP OF D2

  • Oh, Yong-Geun
    • 대한수학회지
    • /
    • 제53권4호
    • /
    • pp.795-834
    • /
    • 2016
  • The main purpose of this paper is to propose a scheme of a proof of the nonsimpleness of the group $Homeo^{\Omega}$ ($D^2$, ${\partial}D^2$) of area preserving homeomorphisms of the 2-disc $D^2$. We first establish the existence of Alexander isotopy in the category of Hamiltonian homeomorphisms. This reduces the question of extendability of the well-known Calabi homomorphism Cal : $Diff^{\Omega}$ ($D^1$, ${\partial}D^2$)${\rightarrow}{\mathbb{R}}$ to a homomorphism ${\bar{Cal}}$ : Hameo($D^2$, ${\partial}D^2$)${\rightarrow}{\mathbb{R}}$ to that of the vanishing of the basic phase function $f_{\underline{F}}$, a Floer theoretic graph selector constructed in [9], that is associated to the graph of the topological Hamiltonian loop and its normalized Hamiltonian ${\underline{F}}$ on $S^2$ that is obtained via the natural embedding $D^2{\hookrightarrow}S^2$. Here Hameo($D^2$, ${\partial}D^2$) is the group of Hamiltonian homeomorphisms introduced by $M{\ddot{u}}ller$ and the author [18]. We then provide an evidence of this vanishing conjecture by proving the conjecture for the special class of weakly graphical topological Hamiltonian loops on $D^2$ via a study of the associated Hamiton-Jacobi equation.

CRITICAL VIRTUAL MANIFOLDS AND PERVERSE SHEAVES

  • Kiem, Young-Hoon;Li, Jun
    • 대한수학회지
    • /
    • 제55권3호
    • /
    • pp.623-669
    • /
    • 2018
  • In Donaldson-Thomas theory, moduli spaces are locally the critical locus of a holomorphic function defined on a complex manifold. In this paper, we develop a theory of critical virtual manifolds which are the gluing of critical loci of holomorphic functions. We show that a critical virtual manifold X admits a natural semi-perfect obstruction theory and a virtual fundamental class $[X]^{vir}$ whose degree $DT(X)=deg[X]^{vir}$ is the Euler characteristic ${\chi}_{\nu}$(X) weighted by the Behrend function ${\nu}$. We prove that when the critical virtual manifold is orientable, the local perverse sheaves of vanishing cycles glue to a perverse sheaf P whose hypercohomology has Euler characteristic equal to the Donaldson-Thomas type invariant DT(X). In the companion paper, we proved that a moduli space X of simple sheaves on a Calabi-Yau 3-fold Y is a critical virtual manifold whose perverse sheaf categorifies the Donaldson-Thomas invariant of Y and also gives us a mathematical theory of Gopakumar-Vafa invariants.