• Title/Summary/Keyword: Caisson foundation

Search Result 50, Processing Time 0.023 seconds

Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations

  • Lee, So-Young;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.525-539
    • /
    • 2019
  • In this study, vibration characteristics of a gravity-based caisson-foundation breakwater system are investigated for ambient and geometric parameters such as various waves, sea levels, and foundation conditions. To achieve the objective, following approaches are implemented. Firstly, operational modal analysis methods are selected to identify vibration modes from output-only dynamic responses. Secondly, a finite element model of an existing caisson-foundation breakwater system is established by using a structural analysis program, ANSYS. Thirdly, forced vibration analyses are performed on the caisson-foundation system for two types of external forces such as controlled impacts and wave-induced dynamic pressures. For the ideal impact, the wave force is converted to a triangular impulse function. For the wave flow, the wave pressure acting on the system is obtained from wave field analysis. Fourthly, vibration modes of the caisson-foundation system are identified from the forced vibration responses by combined use of the operational modal analysis methods. Finally, vibration characteristics of the caisson-foundation system are investigated under various waves, sea levels, and foundations. Relative effects of foundation conditions on vibration characteristics are distinguished from that induced by waves and sea levels.

Distribution of Ground Contact Pressure under Rigid Foundation of Large Pneumatic Caisson (대형 뉴메틱케이슨 강성기초의 접지압분포)

  • Hong, Won-Pyo;Yea, Geu-Guwen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.105-115
    • /
    • 2008
  • The records of field instrumentation, which have been performed on the pneumatic caisson used for substructure of the Youngjong Grand Bridge, were analyzed to investigate the ground contact pressure under rigid foundation of large pneumatic caisson embedded in various ground layers. During sinking the pneumatic caisson, the resisting force was mobilized against sinking the caisson at the contact area between bottom of the caisson and the ground. The resisting force could be measured by the reaction force gauges instrumented under the edge of bottom of the pneumatic caisson. And the ground contact pressure could be estimated by use of the measuring records of the resisting force. The ground contact pressure under rigid foundation of large pneumatic caisson shows concave distribution on bedrock, while convex distribution was shown in marine deposit soil layer as well as weathered rock layer. And, the ground contact pressure in various ground layers was distributed axis-symmetrically. The distribution shape of the ground contact pressure determined by the maximum pressure acting on foundation of the large pneumatic caisson showed good coincidence with the distribution shape proposed for rigid foundation by Kgler(1936) and Fang(1991).

Structural Damage Monitoring of Harbor Caissons with Interlocking Condition

  • Huynh, Thanh-Canh;Lee, So-Young;Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.678-685
    • /
    • 2012
  • The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple-caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear-key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

A Study on the Suitability of Suction Caisson Foundation for the 5Mw Offshore Wind Turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 연구)

  • Kim, Yong-Chun;Chung, Chin-Wha;Park, Hyun-Chul;Lee, Seunug-Min;Kwon, Dae-Yong;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Foundation plays an important role in the offshore wind turbine system. Different from conventional foundations, the suction caisson is proven to be economical and reliable. In this work, three-dimensional finite element method is used to check the suitability of suction caisson foundation. NREL 5MW wind turbine is chosen as a baseline model in our simulation. The maximum overturning moment and vertical load at the mudline are calculated using FAST and Bladed. Meanwhile the soil-structure interaction response from our simulation is also compared with the experiment data from Oxford university. The design parameter such as caisson length, diameter of skirt and spacing of multipod are investigated. Accordingly based on these parameters suggestions are given to use suction caisson foundations more efficiently.

Case Study on Foundation Design of over-water Bridge (해상교량기초의 설계 사례)

  • Jang, Hak-Sung;Jang, Young-Il;Choi, Young-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.221-228
    • /
    • 2005
  • The economic growth brought the demand of bridge connected to island and land increasingly in Korea. Therefore, Civil engineer has faced a lot of problem to be considered such as structural stability, economic feasibility and constructional method. At the bridge site to be constructed, the depth of water is about 24m, the thickness of weathered rock overlaying bed rock is thicker than 36m. If open caisson foundation is supported in bed rock, the hight of foundation is about 60m. It is difficult to construct in these conditions. If open caisson foundation is supported in weathered rock, the size of the foundation should be increased. And If we apply the pile foundation, the higher construction cost will be needed. Under the circumstances, we need a new foundation type-composite foundation that is consisted of open caisson and cast-in-place piles. Because the design concept of composite foundation is not presented in Korea Bridge Design Standard, we are willing to clear the bearing behavior of composite foundation by numerical analysis in this paper.

  • PDF

An Impact Test for investigating the Dynamic Characteristics of Actual Bridge Foundation (교량기초의 동적특성 파악을 위한 충격실험)

  • Kim, Hak-Soo;Lee, Sang-Hee;Yang, Kyung-Taek;Kim, Saeng-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • Although most bridge foundations are usually constructed by Caisson, terrain difficulties sometimes bring about constructing bridge foundations by Jacket piles. This study investigated the dynamic characteristics of Caisson and Jacket by testing the impact applied to actual bridge foundations. The test result showed that the damping ratio of the foundation constructed by Jacket and Caisson were measured 1-2% and 3-6%, respectively. Considering the lateral deflection measured by the impact test, the rigidity of foundations constructed by Jacket was assessed about 1/5 - 1/6 of those constructed by Caisson. It implies that designing bridge foundations should include and reflect the dynamic analysis of bridge foundation.

  • PDF

Vibration-based damage monitoring of harbor caisson structure with damaged foundation-structure interface

  • Lee, So-Young;Nguyen, Khac-Duy;Huynh, Thanh-Canh;Kim, Jeong-Tae;Yi, Jin-Hak;Han, Sang-Hun
    • Smart Structures and Systems
    • /
    • v.10 no.6
    • /
    • pp.517-546
    • /
    • 2012
  • In this paper, vibration-based methods to monitor damage in foundation-structure interface of harbor caisson structure are presented. The following approaches are implemented to achieve the objective. Firstly, vibration-based damage monitoring methods utilizing a variety of vibration features are selected for harbor caisson structure. Autoregressive (AR) model for time-series analysis and power spectral density (PSD) for frequency-domain analysis are selected to detect the change in the caisson structure. Also, the changes in modal parameters such as natural frequency and mode shape are examined for damage monitoring in the structure. Secondly, the feasibility of damage monitoring methods is experimentally examined on an un-submerged lab-scaled mono-caisson. Finally, numerical analysis of un-submerged mono-caisson, submerged mono-caisson and un-submerged interlocked multiple-caissons are carried out to examine the effect of boundary-dependent parameters on the damage monitoring of harbor caisson structures.

Numerical and experimental study on evaluating the depth of caisson foundation with Sonic Echo method

  • Tong, Jian-Hua;Liao, Shu-Tao;Liu, Kang-You
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.519-532
    • /
    • 2012
  • Using nondestructive testing techniques to evaluate the length or depth of an existing foundation is an important issue with potential high application values. One of these is to evaluate whether the foundation is broken after severe earthquakes. In this aspect, academic research related to nondestructive evaluation for caisson foundations is rarely reported. The objective of this paper is to study the feasibility of using Sonic Echo method to evaluate the depth of caisson foundations. Two types of caissons, simple cylindrical caisson and compound caisson with chambers, were studied for their responses to the Sonic Echo tests. The study was carried out in numerical simulation with finite element method and experimental way with in-situ tests. A bridge system which spans over Sofong Brook in Taiwan was selected for the tests in situ. The bridge system is still under construction and therefore the effect of different construction stages on the testing results may be studied. In this paper, the parameters to be varied for the studies include the testing locations and the existence of chamber plates, the bottom plate and the top plate. Finally some preliminary conclusions can be reached for a successful test.

Experimental Modal Analysis for Damage Identification in Foundation-Structure Interface of Caisson-type Breakwater (케이슨식 방파제 지반-구조 경계부 손상식별을 위한 실험적 모드분석)

  • Lee, So-Young;Lee, So-Ra;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • This paper presents an experimental modal analysis of a caisson-type breakwater to produce basic information for the structural health assessment of a caisson structure. To achieve the objective, the following approaches are implemented. First, modal analysis methods are selected to examine the modal characteristics of a caisson structure. Second, experimental modal analyses are performed using finite element analyses and lab-scale model tests. Third, damage scenarios that include several damage levels in a foundation-structure interface are designed. Finally, the effects of damage on the modal characteristics are analyzed for the purpose of utilizing them for damage identification.

Damage Monitoring in Foundation-Structure Interface of Harbor Caisson Using Vibration-based Autoregressive Model (진동기반 자기회귀모델을 통한 항만케이슨 지반-구조 경계부의 손상 모니터링)

  • Lee, So-Ra;Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • This study presents the damage monitoring method in foundation-structure interface of harbor caisson using vibration-based autoregressive (AR) model. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based AR model is selected to monitor the damage in foundation-structure interface of caisson structure. Secondly, finite element analysis on a caisson structure model is implemented to evaluate the vibration-based damage monitoring method. Finally, vibration test on a caisson structure model is performed to evaluate applicability of vibration-based AR model method for foundation-structure interface of caisson structure.