• Title/Summary/Keyword: Caenorhabditis elegans (C. elegans)

Search Result 142, Processing Time 0.023 seconds

Toxicity of Phenols to the Nematode Caenorhabditis elegans (Caenorhabditis elegans를 이용한 phenol류의 독성 연구)

  • Jung Kang-Sik;Hyun Sun-Hee;Choung Se-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.3 s.54
    • /
    • pp.239-244
    • /
    • 2006
  • Caenorhabditis elegans(C. elegans) is a free-living soil nematode that commonly used as a biological model and recently, much work has been done using C. elegans as a toxicity model. To evaluate the acute toxicity of phenols to C. elegans, worms were subsequently exposed to nine different xenobiotics. This study described lethal toxicity, reproductive toxicity and movement inhibition using 2-propylphenol, 4-propylphenol, 2-tert-butylphenol, 3-tert-butylphenol, 4-tert-butylphenol, 2-phenylphenol, 4-phenylphenol, nonylphenol and 4-dodecylphenol to C. elegans for 24 hr or 72 hr. We found that phenols used in this study were very toxic to C. elegans. The order of lethal toxicity, reproductive toxicity and movement inhibition is as follows. 4-propylphenol > 2-phenylphenol > 2-tert-butylphenol > 2-propylphenol > nonylphenol > B-tert-butylphenol > 4-dodefylphenol > 4-tert-butylphenol > 4-phenylphenol.

A Database of Caenorhabditis elegans Locomotion and Body Posture Phenotypes for the Peripheral Neuropathy Model

  • Chung, Ki Wha;Kim, Ju Seong;Lee, Kyung Suk
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.880-888
    • /
    • 2020
  • Inherited peripheral neuropathy is a heterogeneous group of peripheral neurodegenerative disorders including Charcot-Marie-Tooth disease. Many peripheral neuropathies often accompany impaired axonal construction and function. To study the molecular and cellular basis of axon-defective peripheral neuropathy, we explore the possibility of using Caenorhabditis elegans, a powerful nematode model equipped with a variety of genetics and imaging tools. In search of potential candidates of C. elegans peripheral neuropathy models, we monitored the movement and the body posture patterns of 26 C. elegans strains with disruption of genes associated with various peripheral neuropathies and compiled a database of their phenotypes. Our assay showed that movement features of the worms with mutations in HSPB1, MFN2, DYNC1H1, and KIF1B human homologues are significantly different from the control strain, suggesting they are viable candidates for C. elegans peripheral neuropathy models.

Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans

  • Kwon, Sujeong;Kim, Eun Ji E.;Lee, Seung-Jae V.
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.274-279
    • /
    • 2018
  • Mitochondria are crucial organelles that generate cellular energy and metabolites. Recent studies indicate that mitochondria also regulate immunity. In this review, we discuss key roles of mitochondria in immunity against pathogen infection and underlying mechanisms, focusing on discoveries using Caenorhabditis elegans. Various mitochondrial processes, including mitochondrial surveillance mechanisms, mitochondrial unfolded protein response ($UPR^{mt}$), mitophagy, and reactive oxygen species (ROS) production, contribute to immune responses and resistance of C. elegans against pathogens. Biological processes of C. elegans are usually conserved across phyla. Thus, understanding the mechanisms of mitochondria-mediated defense responses in C. elegans may provide insights into similar mechanisms in complex organisms, including mammals.

Ligand Binding Properties of Muscarinic Acetylcholine Receptors in Caenorhabditis elegans

  • You, Suck-Jong;Choi, Jung-Do;Cho, Nam-Jeong
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.525-529
    • /
    • 1996
  • Ligand binding properties of muscarinic acetylcholine receptors (mAChRs) in the nematode Caenorhabditis elegans (C. elegans) were characterized by using filtration binding assays. Scatchard analysis using $[^{3}H]N-methylscopolamine$ ($[^{3}H]NMS$) showed that the dissociation constant ($K_d$) and the maximum binding value ($B_{max}$) were $3.3{\pm}0.8{\times}10^{10}$ M and $9.0{\pm}1.1$ fmol/mg protein, respectively. Binding competition experiments indicated that the affinities of C. elegans mAChRs to atropine, scopolamine, and oxotremorine were similar to those of mammalian mAChRs. Pirenzepine binding experiments revealed that the binding pattern of mAChRs in C. elegans closely resembled that of mAChRs in rat brain, suggesting that the receptors consist primarily of Ml subtype. The affinity of mAChRs for oxotrernorine was significantly affected by guanylylimidodiphosphate (Gpp(NH)p), a non hydrolyzable GTP analog, suggesting that mAChRs in C. elegans might be coupled to G proteins. The data presented here indicate the possibility that C. elegans provides a living animal model to study the action mode of the muscarinic cholinergic system.

  • PDF

Resistance of Bovine Colostrum Exosomes to Bacterial Infection by Regulating Iimmunity in Caenorhabditis elegans Model

  • Minkyoung Kang;Minji Kang;Sangnam Oh
    • Journal of Dairy Science and Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.35-47
    • /
    • 2024
  • Milk exosomes contain several bioactive molecules, including lipids, proteins, and miRNAs, which enhance immune response. This study aimed to assess the resistance effects of bovine colostrum exosomes (BCEs) on pathogenic microbial infections in a Caenorhabditis elegans model. BCEs have been shown to enhance the protective response of C. elegans to pathogenic bacterial infections. Our study revealed that BCE extended the lifespan of worms compared to control OP50 worms. In addition, nematode colostrum exosomes promoted nematode resistance to four pathogenic bacteria and prolonged their lifespan in a killing assay. In contrast, mature milk-derived exosomes (BME) did not affect the resistance and lifespan of nematodes exposed to pathogenic bacteria. BCE exposure extended the lifespan of C. elegans against pathogenic infections by stimulating the innate immune response and increasing antimicrobial protein expression. Using biological process-related gene ontology (GO) enrichment analysis, the significantly upregulated GO terms related to C. elegans immunity in BCE-exposed C. elegans included defense, innate immunity, and immune responses. This study demonstrated that BCE enhanced the host defense of C. elegans to prolong its lifespan, thereby suggesting a new natural product against infection by pathogenic bacteria.

Survival assays using Caenorhabditis elegans

  • Park, Hae-Eun H.;Jung, Yoonji;Lee, Seung-Jae V.
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.90-99
    • /
    • 2017
  • Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans.

The Role of mRNA Quality Control in the Aging of Caenorhabditis elegans

  • Hyunwoo C. Kwon;Yunkyu Bae;Seung-Jae V. Lee
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.664-671
    • /
    • 2023
  • The proper maintenance of mRNA quality that is regulated by diverse surveillance pathways is essential for cellular homeostasis and is highly conserved among eukaryotes. Here, we review findings regarding the role of mRNA quality control in the aging and longevity of Caenorhabditis elegans, an outstanding model for aging research. We discuss the recently discovered functions of the proper regulation of nonsense-mediated mRNA decay, ribosome-associated quality control, and mRNA splicing in the aging of C. elegans. We describe how mRNA quality control contributes to longevity conferred by various regimens, including inhibition of insulin/insulin-like growth factor 1 (IGF-1) signaling, dietary restriction, and reduced mechanistic target of rapamycin signaling. This review provides valuable information regarding the relationship between the mRNA quality control and aging in C. elegans, which may lead to insights into healthy longevity in complex organisms, including humans.

DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

  • Park, Sojin;Choi, Seoyun;Ahn, Byungchan
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.204-210
    • /
    • 2016
  • DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents.

Developmental Regulation of Caenorhabditis elegans DNA Topoisomerase I Expression

  • Jang, Yeon-Joo;Park, Hyung-Ki;Lee, Jun-Ho;Koo, Hyeon-Sook
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.249-253
    • /
    • 1998
  • The developmental regulation of Caenorhabditis elegans DNA topoisomerase I expression was examined using synchronized Caenorhabditis elegans cultures. Variations of the relative mRNA and protein levels of the enzyme during their development were measured by Northern and Western analyses, respectively. The mRNA level was the highest at the embryonic stage, decreasing rapidly to the one tenth level at the L1 stage, and then increasing by a few fold at the L4 and young adult stages. The protein level was the highest at the L1 stage, with gradual decreasing at the following stages until it showed a slight increase at the young adult stage. Based on our results of the expressional regulation, the possible roles of DNA topoisomerase I in the development of C. elegans are discussed.

  • PDF

Analysis of responses to physical stimuli in Caenorhabditis elegans using a microfluidic system (미세유체시스템을 이용한 예쁜꼬마선충의 물리적 자극에 대한 반응 분석)

  • Yoon, Sunhee;Piao, Hailing;Jeon, Tae-Joon;Kim, Sun Min
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.2
    • /
    • pp.22-27
    • /
    • 2015
  • Caenorhabditis elegans (C.elegans) has various interesting behavioral properties, such as chemotaxis, thermotaxis, and electrotaxis. However, most previous research were only focused on single-stimulus for studying its behavioral properties. In this paper, we propose a simple and effective device for analyzing the behavior of C.elegans with combined stimuli, electric field and temperature. We compared and analyzed wild type worms (N2) and four mutant worms (tax-4, ttx-7, unc-54, unc-6). We analyzed the reaction of worms to certain stimulus and identified that this device is effective to apply a combined stimulus.