• Title/Summary/Keyword: Cadmium stress

Search Result 116, Processing Time 0.039 seconds

Induction of Metallothionein-like Protein in the Rat Brain by Intracerebroventricular Cadmium Treatment (흰쥐 측뇌실의 Metallothionein 유사단백질과 Stress Protein의 유도)

  • 원석준;손성향
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.238-247
    • /
    • 1995
  • 쥐 뇌에·처 카드뮴에 대한 metallothionein-like protein(MTLP)의 유도 생성 능력을 알아보기 위하여 Stereotaxic Bpparatus를 이용하여 측뇌실에 카드뮴을 주사하여 다음과 같은 결과를 얻었다. 대조군과 생리식염수 처리군에서는 MTLP의 양적 변화가 없었고. 카드를 처리군은 대조군과 식염수 처리군에 비하여 MTLP가 2배 이상 유도되었다. MTLP의 분자량은 6.000-6,500 Oa 정도 였으며. 흡광도가 254 nm에서 높게 나타나고. 280 nm에서 낮게 나타나는 것으로 보아 thiol 함량이 높고 방향족 아미노산이 적은 단백질임을 알 수 있었다 또한 카드뮴 처리군에서는 MTLP 이외의 여러 종류의 protein-30. 64, 68, 80, 108 kDa-들이 유도되었다 이와 같은 결과로 카드뮴은 흰쥐 뇌에서도 MTLP의 유도 능력이 있음을 알 수 있었다.

  • PDF

Antioxidant Activity of Theaflavin and Thearubigin Separated from Korean Microbially Fermented Tea

  • Shon, Mi-Yae;Park, Seok-Kyu;Nam, Sang-Hae
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.1
    • /
    • pp.7-10
    • /
    • 2007
  • Theaflavins (TF) and thearubigins (TR) were separated from Korean microbially fermented tea leaves. Contents of TF (74.4 $\mu$M/g) and TR (37.2%) were higher than reported for black tea fermented by oxidase. Antioxidant activities of TF, TR and EGCG were analyzed and protective effects of COS-7 cells against copper and cadmium-induced toxicity were investigated. TF and TR exhibited good inhibition rates of about 85$\sim$90% for antioxidant and scavenging activities of free radicals and protected COS-7 cells against apoptosis or damage caused by stress, such as cadmium and copper-oxidative injury, free radicals etc. These results indicate that TF, TR and EGCG have antioxidant and scavenging activities against free radicals and protect COS-7 cells from Cu, Cd induced injury.

HSP27 MODULATION OF IMPLANT- ASSOCIATED METAL ION CYTOTOXICITY OF OSTEOBLASTIC CELLS (임프란트에 관련된 금속이온의 조골세포에 대한 세포독성에 미치는 Hsp27의 영향에 대한 실험적 연구)

  • Yoon, Jung-Ho;Ha, Dong-Jin;Rim, Jae-Suk;Kwon, Jong-Jin;Jang, Hyon-Seok;Lee, Eui-Seok;Kim, Dae-Sung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.2
    • /
    • pp.127-135
    • /
    • 2006
  • Objectives: The extent of bone formation that occurs at the interface of metallic implants and bone is determined by the number and activity of osteoblastic cells. Stress proteins may be contributing determinants of cell viability in altered environments. Hsp27 is a small Mr hsp which is known as a molecular chaperone. Methods: To better understand how heat shock protein 27 contributes to endosseous implant - associated metal ions affects on osteoblastic cell viability, the effect of chromium and titanium ions were compared to effects of cadmium ions in the ROS17/2.8 osteoblastic cell line. Results: ROS17/2.8 osteoblastic cell line demonstrated ion - specific reductions in growth; reductions were significantly greater for cadmium than for chromium or titanium. Chromium impaired growth of cultures without altering cell viability measured using the MTT assay. A stable transformed cell line expressing additional hsp27(clone "A7") was resistant to the toxic effects of titanium and partially protected from cadmium toxicity. Conclusions: A role for hsp27 in protection of osteoblastic cells from metal ion toxicity is supported by the chromium - induced elevations in hsp27 abundance and the behavior of the A7 cell line in response to metal ions in culture. Similar biochemical responses to altered cellular environments may contribute to the fate of tissues adjacent to select metallic implants.

Effect of Heavy Metal Resistant and Halotolerant Rhizobacterium Bacillus safensis KJW143 on Soybean under Salinty and Cadmium Exposure

  • Eun-Hae Kwon;Ho-Jun Gam;Yosep Kang;Jin-Ryeol Jeon;Ji-In Woo;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.32-32
    • /
    • 2023
  • Cadmium and salt exposure to crops is considered vulnerable for production as well as consumption. To address these challenges, the current study aimed to mitigate the toxicity induced by salt and cadmium in soybean plants through the application of bacterial strain Bacillus safensis KJW143 isolated from the rhizosphere of oriental melon..The bioassay analysis revealed that KJW143 is a highly salt-tolerant and cadmium-resistant (Cd) strain with an innate ability to produce melatonin, gibberellin (GA3), Indole-3-Acetic Acid (IAA), and organic acids (i.e., acetic, succinic, lactic, and propionic acids). Soybean plants at 20 days old were treated with KJW143 in a different form (pellet, broth, and together) and their effect on plant performance was investigated. Inoculation with KJW143enhanced plant biomass and growth attributes in soybean plants compared to the control (non-treated). In particular, we observed that only pellet-treated showed 65%, 27.5%, and 28.7% increase in growth (shoot fresh weight) compared to broth, broth with pellet, and control. In addition, bacterial strain KJW143 treatment (only pellet) modulated the physiochemical apparatus of soybean plants by increasing glucose (390%), arabinose (166%), citric acid (22.98%) and reducing hydrogen peroxide (29.7%), catalase (32.1%), salicylic acid (25.6%) compared to plants with combined stressed plants (cd and salinity). These findings suggest that bacterial strain KJW143 could be usedas a biofertilizer to minimize the probable risk of heavy metal and salinity stress on crops.

  • PDF

Characterization and Regulation of the Gene Encoding Monothiol Glutaredoxin 3 in the Fission Yeast Schizosaccharomyces pombe

  • Moon, Jeong-Su;Lim, Hye-Won;Park, Eun-Hee;Lim, Chang-Jin
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.74-82
    • /
    • 2005
  • Glutaredoxins (Grxs) are thioloxidoreductases which are required for maintaining thiol/disulfide equilibrium in living cells. The Grx3 gene, which encodes one of the three monothiol Grxs in the fission yeast Schizosaccharomyces pombe, was characterized, and its transcriptional regulation studied. Genomic DNA encoding Grx3 was isolated by PCR, and a plasmid pTT3 carrying this DNA was produced. The DNA sequence has 1,267 bp, which would encode a monothiol Grx of 166 amino acids with a molecular mass of 18.3 kDa. The putative protein has 27% homology with Grx5, and contains many hydrophobic amino acid residues in its N-terminal region. S. pombe cells harboring pTT3 had increased Grx activity and enhanced survival on minimal medium plates containing aluminum (5 mM), BSO (0.05 mM), menadione (0.01 mM) or cadmium (0.2 mM). The 568 bp upstream region of Grx3 was fused into the promoterless b-galactosidase gene of the shuttle vector YEp367R to generate fusion plasmid pMJS10. Potassium chloride (KCl) and metals including aluminum and cadmium enhanced the synthesis of ${\beta}$-galactosidase from the fusion gene. The synthesis of ${\beta}$-galactosidase was also enhanced, in a Pap1-dependent manner, by fermentable carbon sources such as glucose (at low concentrations) and sucrose, but not by non-fermentable carbon sources such as ethanol and acetate. Grx3 mRNA increased in response to treatment with BSO. These observations indicate that S. pombe Grx3 is involved in the response to stress, and is regulated by stress.

Effects of Heavy Metals on Growth and Protein Synthesis in Cyanobacterium synechocystis sp. PCC 6803 (중금속이 Cyanobacterium synechocystis sp.PCC 6803의 성장과 단백질 합성에 미치는 영향)

  • 강경미;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.4
    • /
    • pp.315-329
    • /
    • 1996
  • The changes of growth and protein synthesis pattern by aluminum (Al), cadmium (Cd), zinc (Zn) treatments were studied in Cyanobacterium synechocystis sp. PCC 6803. When exposed to Al from 5ppm to 3oppm, synechocystis grows normally. But more than that retard the growth of algae notably. The 0.05ppm Cd additions had no effect on the growth of algae. 0.1, 0.2, and 0.5ppm Cd inhibited growth. Under 1 and 2ppm Cd stress, growth was greatly diminished. Zn had dual effects. The growth of algae in media containing 5ppm was stimulated. As concentration increases more than l5ppm, growth inbition increases. Under 25ppm Zn stress, growth was greatly diminished. According to logistic theory, r and K values of each heavy metal-treated groups were estimated. Correlation analysis of r and K values with metal concentration shows that there is negative correlation between K and concentration in Cd and Zn treatments. Critical concentration which shows lethal or sublethal effect was estimated by t-test of each r and K value. The cells cultured in 10, 20, 30, 40 and 5oppm of Al, 1 and 2ppm of Cd, and 10, 15, 20, 25 and 30ppm of Zn for 4 days was used for protein analysis. Analysis of protein synthesis with SDS-PACE showed alterations of protein synthesis pattern. The synthesis of protein about 220kD increased markedly. In this study, it showed that resistance mechanism against Al, Cd, and Zn is K selection and that metal stress induced the change of protein synthesis in Cyanobacterium synechocystis sp. PCC 6803.Key words:Cyanobacterium synechocystis sp. FCC 6803, Heavy metals, Aluminum, Cadmiutm Zinc, Crowth, Frotein synthesis.

  • PDF

Effect of Cadmium on Oxidative Stress and Activities of Antioxidant Enzymes in Tomato Seedlings

  • Cho, Un-Haing;Kim, In-Taek
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.115-121
    • /
    • 2003
  • Leaves of two-week old seedlings of tomato (Lycopersicon esculentum) were treated with various concentrations (0∼100 M) of $CdCl_2$ for up to 9 days and subsequent growth of seedlings, symptoms of oxidative stress and isozyme activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POX) were investigated. Compared with the non-treated control, Cd exposure decreased biomass but increased Cd accumulation, hydrogen peroxide production and lipid peroxidation as malondialdehyde (MDA) formation in leaves and roots. Further studies on the developmental changes of isozyme activities showed that Fe-SOD, Cu/Zn-SOD and one of three APX isozymes decreased and CAT and one of four POX isozymes increased in leaves, whereas Fe-SOD, one of three POX isozymes and two of four APX isozymes decreased and CAT increased in roots, showing different expression of isozymes in leaves and roots with Cd exposure level and time. Based on our results, we suggest that the reduction of seedling growth by Cd exposure is the oxidative stress resulting from the over production of $H_2O_2$ and the insufficient activities of antioxidant enzymes particularly involved in the scavenging of $H_2O_2$. Further, the decreased activities of SOD and APX isozymes of chloroplast origin, the increased activities of CAT and POX and high $H_2O_2$ contents with Cd exposure might indicate that Cd-induced oxidative stress starts outside chloroplast.