• Title/Summary/Keyword: Cadmium recovery

Search Result 60, Processing Time 0.02 seconds

The Monitoring of Heavy Metals in Human Bloods of Middle School Students (중학생의 혈액 중 중금속 모니터링)

  • Park Hee Ra;Kim Meehye;Kwun Ki-Sung;Kim Soon Ki;Heo Su-Jeong;Kim Kwang_Jin;Yum Tae-Kyung;Choi Kwang Sik;Kim Soo Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.20 no.2
    • /
    • pp.83-88
    • /
    • 2005
  • This study was conducted to estimate the contents of heavy metals including lead, cadmium, zinc, copper as well as iron status(serum iron, total iron binding capacity, feritin etc)in blood samples of middle school students(n=300). The contents of heavy metals were determined using the GF-AAS (Graphite furnace Atomic Absorption Spectrophotometer). The microwave digestion method and dilution method were compared. The dilution method showed the better recovery and detection limit than microwave digestion method. The values of toxic metals in whloe blood of boys & girls were 3.46 & 3.05 for Pb,0.063 & 0.065 for Cd respectively (ug/dL). Also the values of trace metals in serum of boys & girls were 105.9 & 92.6 for Zn, 98.3 & 99.0 for Cu respectively (ug/dL). The prevalence of iron deficiency was $7.5\%$ in 146 boys and $14.3\%$ in 156 girls. The mean values of lead in girls were higher in iron deficiency, iron deficiency anemia and anemia groups than normal group. The mean values of lead and zinc were higher in boys compared to those in girls(P<0.05), the mean values of cadmium and copper in boys were similar to those in girls. Our results of toxic metals such as Pb & Cd showed lower to CDC's(Centers for Disease Control) blood lead levels of concern for children, 10 ug/dL.

Detection of Heavy Metal Contents in Sesame Oil Samples Grown in Korea Using Microwave-Assisted Acid Digestion

  • Park, Min-Kyoung;Yoo, Ji-Hyock;Lee, Je-Bong;Im, Geon-Jae;Kim, Doo-Ho;Kim, Won-Il
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • This study aimed to determine heavy metal contents in sesame oil samples produced in Korea through microwave-assisted acid digestion without using an emulsifier. Three heavy metal, cadmium (Cd), lead (Pb) and arsenic (As) in twelve sesame oil samples were determined by ICP-MS. The validation of analysis method was checked by standard addition method (10 and $100{\mu}g/kg$). As a result, linearity ($R^2$) was above 0.999 and RSDs were lower than 4%. The recovery of Cd, Pb and As ranged between 98.5-101.6%, 100.3-101.3%, and 102.1-111.2%, respectively. The detected ranges in sesame oil samples were as follows; N.D. to $0.109{\mu}g/g$ for Cd, 0.014 to $0.200{\mu}g/g$ for Pb and 0.014 to $0.125{\mu}g/g$ for As, respectively. Therefore, sesame seeds and products grown in heavy metal-polluted regions which are used as food should be given priority attention and consideration.

Monitoring and Risk Assessment of Heavy Metals in Perennial Root Vegetables (다년생 근채류 중 중금속 모니터링 및 위해성평가)

  • Cho, Min-Ja;Choi, Hoon;Kim, Hye-Jeong;Youn, Hye-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • BACKGROUND: This study was carried out to survey the levels of heavy metals in perennial root vegetables and to assess dietary exposure and risk to the Korean population health.METHODS AND RESULTS: Perennial root vegetables (n=214) including Panax ginseng C.A mayer, Woodcultivated ginseng, Codonopsis lanceolata, and Platycodon granditloum were collected from markets or harvested from farmhouse in Korea. Lead(Pb), cadmium(Cd) and arsenic (As) analysis were performed with microwave device and inductively coupled plasma mass spectrometer. Limit of detection for heavy metals were 0.010~0.050 μg/kg, while limit of quantitation were 0.035~0.175 μg/kg. The recovery results were in the range of 76~102%. The average contents of heavy metals in perennial root vegetables were in the range of Pb 0.013(Panax ginseng C.A Mayer)~0.070 (Wood-cultivated ginseng) mg/kg, Cd 0.009(Panax ginseng C.A Mayer)~0.034(Codonopsis lanceolata) mg/kg, and As 0.002(Panax ginseng C.A Mayer)~0.004(Plafycodon grandiflorum) mg/kg, respectively. For risk assessment, daily intakes of heave metals were estimated and risk indices were calculated in comparison with reference dose. The dietary exposures of heavy metals through usual intake were Pb 0.070 μg/day, Cd 0.041 μg/day and As 0.008 μg/day, taking 0.03%, 0.08% and 0.0003% as risk indices, respectively.CONCLUSION: The risk level for Korean population exposed to heavy metals through intake of perennial root vegetables was far low, indicating of little possibility of concern.

A Study on Co-precipitation of Indium Hydroxide (In(OH)3) for the Recovery and Determination of Trace Heavy Metals (인듐 수산화물(In(OH)3)의 공동침전을 이용한 미량의 중금속 회수 및 분석방법 연구)

  • Kwon, Seul-woo;Son, Seong-Hun;Lee, Man Seung;Nam, Sang-Ho
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.50-55
    • /
    • 2017
  • Determination of trace elements in a sample including complicated matrix is very difficult due to the interference by the matrix. Therefore, if the trace elements can be separated from the complex sample matrix and determined, the interference effects can be reduced, and it is very helpful for the overall analysis. In this study, the analytes of trace elements were separated from the sample matrix by co-precipitation with trace elements using indium hydroxide ($In(OH)_3$), then detected by inductively coupled plasma-atomic emission spectrometer (ICP-AES). Above all, the optimal conditions for the co-precipitation of elements with indium hydroxide were experimentally established. At last, salt was analyzed by the developed analytical method. No heavy metals were not found in Shinan Jeungdo salt, but trace amounts of several heavy metals except for cadmium were found in Cheonnam Yongkwang salt.

Determination of Heavy Metal Concentration in Herbal Medicines by GF-AAS and Automated Mercury Analyzer

  • Kim, Sang-A;Kim, Young-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.4
    • /
    • pp.281-288
    • /
    • 2021
  • This study was conducted to analyze and compare the concentrations of heavy metals in 430 different products of 20 types of herbal medicines available in the domestic market in Korea by Graphite Furnace-Atomic Absorption Spectrometry (GF-AAS) and automated mercury analyzer. The accuracy for lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg) was in the range 92.67-102.56%, and the precision was 0.21-6.00 relative standard deviation (RSD%), which was in compliance with the Codex acceptable range. Furthermore, the Food Analysis Performance Assessment Scheme (FAPAS) quality control (QC) material showed a recovery range of 96.7-102.0% and 0.33-4.93 RSD%. The average contents (㎍/kg) of Pb, As, Cd, and Hg in herbal medicines were 254.9 (not detected (N.D.)-2,515.2), 171.0 (N.D.-2,465.2), 99.2 (N.D.-797.1), and 6.0 (N.D.-83.6), respectively. Based on the quantitative analysis results, the heavy metal contents of 20 types of herbal medicines distributed in Korea are within the acceptable range according to the standards issued by the Ministry of Food and Drug Safety (MFDS). By using the manufacturer of herbal products as the standard for QC, the Pb, As, Cd, and Hg contents were investigated in the packaging process just before distribution to determine the actual conditions of residual heavy metals in herbal medicines. Thus, these result may contribute to monitoring the QC of herbal medicines distributed in Korea and could provide basic data for supplying safe herbal medicines to the public.

Exposure Assessment of Heavy Metals Migrated from Glassware on the Korean Market (국내 유통 식품용 유리제의 중금속 노출 평가)

  • Kim, Eunbee;Hwang, Joung Boon;Lee, Jung Eun;Choi, Jae Chun;Park, Se-Jong;Lee, Jong Kwon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • The purpose of our study was to investigate the migration level of lead (Pb), cadmium (Cd), and barium (Ba) from glassware into a food simulant and to evaluate the exposure of each element. The test articles were glassware, including tableware, pots, and other containers. Pb, Cd, and Ba were analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The analytical performance of the method was validated in terms of its linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and uncertainty. The monitoring was performed for 110 samples such as glass cups, containers, pots, and bottles. a food simulant. Migration test was conducted at 25? for 24 hours in a dark place using 4% acetic acid as a food simulant. Based on the data; exposure assessment was carried out to compare the estimated daily intake (EDI) to the human safety criteria. The risk levels of Pb and Ba determined in this study were approximately 1.9% and 0.3% of the provisional tolerable weekly intake (PTWI) and tolerable daily intake (TDI) value, respectively, thereby indicating a low exposure to the population.

Food Characteristics of Protein Isolates Recovered from Olive Flounder Paralichthys olivaceus Roe by Isoelectric Solubilization and Precipitation Process (넙치(Paralichthys olivaceus) 알로부터 등전점 용해/침전공정에 의해 회수한 분리단백질의 식품특성)

  • Sang in Kang;In Sang Kwon;Hyeung Jun Kim;In Seong Yoon;Yu Ri Choe;Jung Suck Lee;Jin-Soo Kim;Min Soo Heu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Four roe protein isolates (RPIs) from olive flounder Paralichthys olivaceus roes (OFR) were recovered by isoelectric solubilization (pH 11 and 12) and precipitation (pH 4.5 and 5.5) and investigated for their food characteristics. RPIs contained 4.5-9.6% moisture, 64.1-69.5% protein, 16.1-19.8% lipid, and 1.0-3.9% ash. The protein yields of RPIs ranged from 50.1 to 56.8%, which was significantly different depending on the recovery conditions. A difference was observed in the SDS-PAGE protein band (25-100 kDa) between the alkaline solubilization at pH 11 (RPI-1 and 2) and pH 12 (RPI-3 and 4). The major amino acids of RPIs were Leu, Lys, Asp, Glu and Ala and major mineral components were sulfur, sodium, phosphorus, and magnesium, which were significantly different from OFR (P<0.05). Additionally, the lead and cadmium content was below the chemical hazard standard of the Korean food standards code. The Hunter color and whiteness of RPIs also showed significant differences according to the treatment conditions of the ISP process (P<0.05). This suggests that protein isolates recovered from olive flounder roes have high potential as nutritional supplements.

Monitoring of Heavy Metals in Fruits in Korea (유통 중인 과일류의 중금속 모니터링)

  • Lee, Jin-Ha;Seo, Ji-Woo;An, Eun-Sook;Kuk, Ju-Hee;Park, Ji-Won;Bae, Min-Seok;Park, Sang-Wook;Yoo, Myung-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • According to the Codex committee, the maximum allowable level for lead in fruits is 0.1 mg/kg. This survey was conducted as a surveillance program following the establishment of safety guideline for fruits in Korea. Concentrations of lead (Pb), cadmium (Cd), arsenic (As) and mercury (Hg) were measured in 927 samples using a ICP-MS and a mercury analyzer. The recoveries of microwave digestion method were 86.0-110.4% for Pb, 81.0-104.0% for Cd and 82.0-104.7% for As by standard addition method. The recovery of direct mercury analyzer was 106.5% for Hg. The average levels of Pb in ${\mu}g/kg$ were $10.0{\pm}12.8$ for apple, $8.8{\pm}10.9$ for pear, $4.1{\pm}4.4$ for persimmons, $14.9{\pm}12.3$ for mandarin, $7.1{\pm}6.5$ for orange, $3.1{\pm}3.3$ for banana, $8.8{\pm}8.9$ for kiwi, and $9.3{\pm}9.7$ for mango. The average levels of Cd in ${\mu}g/kg$ were $0.4{\pm}0.3$ for apple, $2.0{\pm}1.6$ for pear, $0.3{\pm}0.3$ for persimmon, $0.1{\pm}0.1$ for mandarin, $0.1{\pm}0.1$ for orange, $1.3{\pm}1.8$ for banana, $0.5{\pm}0.5$ for kiwi, and $0.7{\pm}0.6$ for mango. The average levels of As in ${\mu}g/kg$ were $2.0{\pm}2.1$ for apple, $1.2{\pm}1.3$ for pear, $1.5{\pm}1.2$ for persimmon, $0.8{\pm}0.3$ for mandarin, $1.5{\pm}0.5$ for orange, $1.8{\pm}1.2$ for banana, $1.6{\pm}1.5$ for kiwi, and $1.2{\pm}1.5$ for mango. The average levels of Hg in ${\mu}g/kg$ were $0.5{\pm}0.4$ for apple, $0.3{\pm}0.2$ for pear, $0.2{\pm}0.1$ for persimmon, $0.2{\pm}0.1$ for mandarin, $0.2{\pm}0.1$ for orange, $0.2{\pm}0.0$ for banana, $0.2{\pm}0.2$ for kiwi, and $0.6{\pm}0.2$ for mango. Based on the Korean public nutrition report 2005, these levels (or amounts) are calculated only at 0.17% for Pb, 0.013% for Cd and 0.006% for Hg of those presented in provisional tolerable weekly Intake (PTWI) which has been established by FAO/WHO. Therefore, the levels presented here are presumed to be adequately safe.

Monitoring of Heavy Metals Migrated from Glassware, Ceramics, Enamelware, and Earthenware (유리제, 도자기제, 법랑 및 옹기류 재질의 식품용 기구 및 용기·포장의 중금속 이행량 모니터링)

  • Cho, Kyung Chul;Jo, Ye-Eun;Park, So-Yeon;Park, Yongchjun;Park, Se-Jong;Lee, Hye Young
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • This study investigated the migration levels of lead (Pb), cadmium (Cd), and arsenic (As) from food contact articles (glassware, ceramics, enamelware, and earthenware) into a food stimulant (4% v/v, acetic acid). Migration tests were performed at 25℃ for 24 h and all analyses were performed using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS). The method was validated by linearity of calibration curves, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and uncertainty. In glassware, the migration concentrations ranged from not-detected (N.D.) to 752.21 ㎍/L and N.D. to 1.99 ㎍/L for Pb and Cd, respectively. In ceramics, the migration concentrations ranged from N.D. to 1,955.86 ㎍/L, N.D. to 74.06 ㎍/L, and N.D. to 302.40 ㎍/L for Pb, Cd, and As, respectively. In enamelware, the migration concentrations ranged from N.D. to 4.48 ㎍/L, N.D. to 7.00 ㎍/L, and N.D. to 52.00 ㎍/L for Pb, Cd, and Sb, respectively. In earthenware, the migration concentrations ranged from N.D. to 13.68 ㎍/L, N.D. to 0.04 ㎍/L, and N.D. to 6.71 ㎍/L for Pb, Cd, and As, respectively. All results were below the migration limits of Korea standards and specifications for food utensils, containers, and packages.

Risk Assessment of Heavy Metals Migrated from Plastic Food Utensils, Containers, and Packaging Distributed in Korea (국내 유통 식품용 플라스틱 기구 및 용기, 포장의 중금속 위해도 평가)

  • Kyung Youn, Lee;Hyung Soo, Kim;Dae Yong, Jang;Ye Ji, Koo;Seung Ha, Lee;Hye Bin, Yeo;Ji Su, Yoon;Kyung-Min, Lim;Jaeyun, Choi
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Heavy metals can be intentionally or unintentionally introduced into plastic food utensils, containers, and packaging (PFUCP) as additives or contaminants, which can be ingested with food by humans. Here, seven-heavy metals (lead, cadmium, nickel, chromium, antimony, copper, and manganese) with toxicity concerns were selected, and risk assessment was done by establishing their migration from 137 PFUCP products made of 16 materials distributed in Korea. Migration of heavy metals was examined by applying 4% acetic acid as a food simulant (70℃, 30 minutes) to the PFUCP products. Inductively coupled plasma mass spectrometry (ICP-MS) was employed for the analysis of migrated heavy metals, and the reliability of quantitative results was confirmed by checking linearity, LOD, LOQ, recovery, precision, and expanded uncertainty. As a result of monitoring, heavy metals were detected at a level of non-detection to 8.76 ± 11.87 ㎍/L and most of the heavy metals investigated were only detected at trace amounts of less than 1 ㎍/L on average. However, antimony migrated from PET products was significantly higher than other groups. Risk assessment revealed that all the heavy metals investigated were safe with a margin of exposure above 311. Collectively, we demonstrated that heavy metals migrated from PFUCP products distributed in Korea appear to be within the safe range.