• Title/Summary/Keyword: Cadmium Electrode

Search Result 40, Processing Time 0.022 seconds

Real-time Voltammetric Assay of Cadmium Ions in Plant Tissue and Fish Brain Core

  • Ly, Suw-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1613-1617
    • /
    • 2006
  • Optimum analytical conditions for cyclic voltammetry (CV) and square wave (SW) stripping voltammetry were determined using mercury-mixed carbon nanotube paste electrode (PE). The results approached the microgram working ranges of SW: 10.0-80.0 $ugL^{-1}$ and CV: 100-700 $ugL^{-1}$ Cd (II); working conditions of 300-Hz frequency, 100 mV amplitude, 1.6 V accumulation potential, 400 sec accumulation time, and 40 mV increment potential. First, analysis was performed through direct assay of cadmium ions deep into the fishs brain core and plant tissue in real time with a preconcentration time of 400 sec. The relative standard deviation of 10.0 $mgL^{-1}$ Cd (II) observed was 0.064 (n = 12) at optimum conditions. The low detection limit (S/N) was set at 0.6 $ugL^{-1}$ ($5.33{\times}10^{-9}$ M). The methods can be used in direct analysis in vivo or in real-time monitoring of plant tissue.

Complexation of Cadmium(II) with Soil Fulvic Acid

  • Me Hae Lee;Se Young Choi;Hichung Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.453-457
    • /
    • 1993
  • Cadmium(II) complexation by a well characterized soil fulvic acid (FA) from the Okchun Metamorphic Belt were studied at pH of 6.0 in 0.1 M $NaClO_4$ using the ultrafiltration technique. The conditional stability constants thus obtained were log K= 3.90${\pm}$0.15 and 3.99${\pm}$0.12 $L{\cdot}mol^{-1}$ at fulvic acid concentrations of 101 and 226 mg${\cdot}L^{-1}$ respectively. When free cadmium ion concentration was measured directly using an ion selective electrode, log K of 4.12${\pm}$0.03 $L{\cdot}mol^{-1}$ was obtained. These results show that fulvic acid forms predominately 1 : 1 complex with $Cd^{2+}$ ions. The maximum binding ability of this polyelectrolyte material was 0.886 mmol Cd/g FA. The average gram formula weight of fulvic acid was estimated to be 1130 daltons.

Electrolytic Deposition of Metal Ions Using A Liquid Cadmium Cathode

  • Shim, Joon-Bo;Ahn, Byung-Gil;Kwon, Sang-Woon;Kim, Eung-Ho;Yoo, Jae-Hyung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.337-337
    • /
    • 2004
  • As one of researches for the P & T purposes, a basic experiment on the recovery of actinide elements from the mixture with rare earth elements by means of electrorefining using a liquid cadmium cathode in the LiCl-KC1 eutectic melt was carried out. In order to examine the behaviors of electrodeposition of metal ions on a liquid electrode, recovery experiments of rare earth metals resulting from forming electrodeposits were performed by a galvanostatic electrolysis method at various current densities. A cyclic voltammetric technique was applied to determine reduction-oxidation potential of each metal element in the melt and to detect the changes of the multi component melt composition for on-line monitoring. Also, a collaboration study with RIAR was completed to test the preliminary feasibility on a recovery of actinide elements from the mixture with rare earth elements using a liquid cadmium cathode and actinide metals. Experimental results showed that the ratio of actinides to rare earths, 9: 0.5∼1 led to the rare earth content of about 5∼10 wt% in the deposit.

  • PDF

Complexation of Cadmium(Ⅱ) with Humic Acids: Effects of pH and Humic Acid Origin

  • Lee, Mee-Hae;Choi, Se-Young;Chung, Kun-Ho;Moon, Hi-Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.726-732
    • /
    • 1993
  • A comparative study on cadmium(II) complexation with three well characterized humic acids (SHA: soil humic acid from the Okchun Metamorphic Belt; AqHA: aquatic humic acid from Gorleben underground aquifer, Germany; CoHA: commercially available humic acid from the Aldrich Co.) was carried out in 0.1 M $NaClO_4$ at different solution pH(5.0, 5.5, and 6.0) using the ultrafiltration technique. The maximum binding ability (MBA) of the humic acids for cadmium(II) was observed to vary with their origins and solution pH. The results suggest that 1 : 1 complex predominates within the experimental range, and the conditional stability constants were calculated based on the assumption of cooperative binding, yielding log K values that were quite similar (CoHA: 4.17${\pm}$0.08; AqHA: 4.14${\pm}$0.07; SHA: $4.06{\pm} 0.12\;l\;mol^{-1}$ at pH 6.0) irrespective of humic acid origins or pH. By contrast a nonlinear Schatchard plot was obtained, using the cadmium(II) ion selective electrode speciation analysis method, which indicated that humic acid may have two or more classes of binding sites, with $log\;K_1\;and\;log\;K_2$ of 4.73${\pm}$ 0.08 and $3.31{\pm}0.14\;l\;mol^{-1}$ respectively.

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim ;Kichang Shin ;Aleksey Bolotnikov;Wonho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1718-1733
    • /
    • 2023
  • The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.

DISCHARGE CHARACTERISTICS OF NICKELOXIDE ELECTRODE PREPARED FROM ELECTROCHEMICAL IMPREGNATION

  • Takenoya, K.;Sasaki, Y.;Yamashita, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.363-365
    • /
    • 1999
  • The improved method comprises electrochemically deposition of nickel hydroxide into the sintered nickel plaque cathode from nickel aqueous electrolyte at acid pH in a treating zone containing an anode. The electrochemical impregnation was examined under various conditions. Deposition condition of fine active material was obtained from the impregnation of a high temperature and also high current density. This method also could be decreased swelling and buckling of the plaque. A nickel electrode prepared by electrochemical impregnation is useful as the positive in nickel-cadmium cells. The utilization of the active material indicated almost 100% based on a one electron charge.

  • PDF

An Improvement of the Characteristics of Pasted Cadmium Electrodes by Electrolytes in Ni/Cd Battery (Ni/Cd 전지에서 전해액에 의한 페이스트식 카드뮴 전극 특성 향상)

  • Han, Min-Young;Lee, Wan-Jin;Lee, Woo-Tai;Kim, Sun-Il;Kim, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1192-1199
    • /
    • 1999
  • The morphology changes of cadmium hydroxide into ${\gamma}$ phase by eletrolytes were carried out to improve the high rate charge and discharge efficiency of pasted cadmium electrodes. KOH solutions with different concentrations of NaOH were used as eletrolytes. It was found that the utilization of active material of cadmium electrode was the best in an electrolyte with 1.82 M NaOH. The amount of ${\gamma}-Cd(OH)_2$ increased in proportion to the concentration of NaOH. The surface area measurement showed that an active material which contained mainly ${\gamma}-Cd(OH)_2$ had a higher specific surface area than an active material of ${\beta}-Cd(OH)_2$. In a sealed cell, the discharge capacity was improved at high rate charge and discharge (1.0 C, 2.0 C) by using an electrolyte with NaOH. Furthermore, these improved performances were maintained up to 500 cycles at 1.0 C rate charge and discharge cycles.

  • PDF

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Rare earth removal from pyroprocessing fuel product for preparing MSR fuel

  • Dalsung Yoon;Seungwoo Paek;Chang Hwa Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1013-1021
    • /
    • 2024
  • A series of experiments were performed to produce a fuel source for a molten salt reactor (MSR) through pyroprocessing technology. A simulated LiCl-KCl-UCl3-NdCl3 salt system was prepared, and the U element was fully recovered using a liquid cadmium cathode (LCC) by applying a constant current. As a result, the salt was purified with an UCl3 concentration lower than 100 ppm. Subsequently, the U/RE ingot was prepared by melting U and RE metals in Y2O3 crucible at 1473 K as a surrogate for RE-rich ingot product from pyroprocessing. The produced ingot was sliced and used as a working electrode in LiCl-KCl-LaCl3 salt. Only RE elements were then anodically dissolved by applying potential at - 1.7 V versus Ag/AgCl reference electrode. The RE-removed ingot product was used to produce UCl3 via the reaction with NH4Cl in a sealed reactor.

Anodic Stripping Voltammetric Determination of Cadmium(Ⅱ) Using Alga-Modified Carbon Paste Electrodes (Alga변성전극을 이용한 Cadmium(Ⅱ)의 양극벗김 전압-전류법적 정량)

  • Bae, Zun Ung;Choi, Jung Eun;Chang, Hye Young
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.28-35
    • /
    • 1998
  • Microorganisms such as alga are able to uptake toxic and heavy metal ions. After Cd(Ⅱ) was preconcentrated on the carbon paste electrode constructed by incorporating alga (Anabaena), it was determined with differential pulse anodic stripping voltammetry. A well-defined oxidation peak of Cd(Ⅱ) was obtained at - 0.75 V vs. SCE. We investigated the optimum conditions using the peak, which are the effect of the amount of alga, pH, ionic strength, temperature, and preconcentration time on the preconcentration of Cd(Ⅱ) and that of the reduction time and potential on the reduction of Cd(Ⅱ) preconcentrated. Calibration curve for the determination of Cd(Ⅱ) was linear over the range of $1.0{\times}10^6\;M\;to\;8.0{\times}10^6$\;M (R=0.9978) and the detection limit was $5.0{\times}10^{-7}$\;M. The relative standard deviation was 3.1% (n=6) for $7.0{\times}10^{-6}\;M Cd(Ⅱ). In regeneration of the electrode surface with 0.1 M HCl, the response was reproducible continuously by 10 times.

  • PDF