• 제목/요약/키워드: Cables

검색결과 1,575건 처리시간 0.023초

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.

Partial Discharge Simulation and Analysis Based on Experiment in Underground Distribution Power Cables

  • Jung, Chae-Kyun;Kim, Jeong-Tae;Lee, Jong-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.832-839
    • /
    • 2013
  • This paper describes the simulation and experiment for partial discharge (PD) pulse propagation in 22.9kV CNCV power cables. To investigate the propagation characteristics of PD, experiments are carried out by injecting the PD pulse in 100m-long 60 $mm^2$ CNCV cable in the laboratory. The characteristics of PD are also simulated using EMTP to investigate and analyze PD in the same cable. By comparing the simulation and test results, parameter permittivity is recalculated by considering semiconducting screen in the process of simulation and analysis of PD. After it is proved that simulation results and test results are almost similar in the laboratory, extensive simulations are performed to analyse various PD characteristics such as propagation velocity, attenuation, etc. in 60 $mm^2$ and 325 $mm^2$ CNCV cables. Authors are confident that results obtained in this paper will be used as important technical materials to detect and investigate PD generated in transmission and distribution power cables.

전력케이블의 열화측정을 위한 부하전류 및 온도측정 시스템 (Load current and Temperature measurement system for Measuring the Degradation of Power cable)

  • 박용규;조영식;이관우;엄기홍;박대희
    • 조명전기설비학회논문지
    • /
    • 제29권2호
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, there has been a surge in interest in equipment diagnosis and monitoring technology from the perspective of providing quality electricity in terms of reliability and safety. In order to meet the electrical demands of consumers, reliability of power supply needs to be maintained. For this purpose, a monitoring system for power cable is very important. Since real-time measuring equipment has many advantages, it is highly applicable. By measuring the load current and the surface temperature of power cables, we have monitored and identified the deterioration phenomena of power cables in operation. Since direct measurement of the cable conductor temperature is not easy, we have measured the surface temperature instead, and converted that temperature to obtain the conductor temperature of the cables. In addition, we have designed a system to detect the deterioration processes of the power cables in operation.

웨어러블 디바이스를 위한 은 나노와이어 코팅 전도사 개발 (The Development of Electro-Conductive Threads Coated with Silver Nanowires for Use in Wearable Devices)

  • 김지민;윤창상
    • 한국의류학회지
    • /
    • 제45권4호
    • /
    • pp.674-684
    • /
    • 2021
  • Recent advances in electronic technology have engendered a need for research on the use of smart materials in clothing. Electro-conductive fibers are expected to be a crucial element of wearable devices. Therefore, in this study, we have attempted to develop electro-conductive threads and cables using silver nanowires. Based on the characteristics of silver nanowire, in which electro-conductivity can be imparted via heat treatment, we prepared conductive threads by coating nylon yarn with silver nanowires and curing at temperatures of 140℃, 150℃, and 160℃. Conductive threads cured at 140℃ had the highest conductivity, followed by threads cured at 160℃ and 150℃ respectively. The order of the electrical conductivity of the threads after tensile testing was consistent with the original order of the conductivity of the threads. When we evaluated the sensing performance of electro-conductive cables fabricated from these threads, the cables manufactured from threads cured at 140℃ and 160℃ were found to function normally within temperature and humidity sensors. All the cables operated normally in illuminance and electrocardiogram sensors. Thus, we believe that threads made of silver nanowire have sufficient electrical conductivity to be utilized as wearable sensors.

Damping and frequency of twin-cables with a cross-link and a viscous damper

  • Zhou, H.J.;Yang, X.;Peng, Y.R.;Zhou, R.;Sun, L.M.;Xing, F.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.669-682
    • /
    • 2019
  • Vibration mitigation of cables or hangers is one of the crucial problems for cable supported bridges. Previous research focused on the behaviors of cable with dampers or crossties, which could help engineering community apply these mitigation devices more efficiently. However, less studies are available for hybrid applied cross-ties and dampers, especially lack of both analytical and experimental verifications. This paper studied damping and frequency of two parallel identical cables with a connection cross-tie and an attached damper. The characteristic equation of system was derived based on transfer matrix method. The complex characteristic equation was numerically solved to find the solutions. Effects of non-dimensional spring stiffness and location on the maximum cable damping, the corresponding optimum damper constant and the corresponding frequency of lower vibration mode were further addressed. System with twin small-scale cables with a cross-link and a viscous damper were tested. The damping and frequency from the test were very close to the analytical ones. The two branches of solutions: in-phase modes and the out-of-phase modes, were identified; and the two branches of solutions were different for damping and frequency behaviors.

Suspended Columns for Seismic Isolation in Structures (SCSI): A preliminary analytical study

  • Shahabi, Ali Beirami;Ahari, Gholamreza Zamani;Barghian, Majid
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.743-755
    • /
    • 2019
  • In this paper, a new system of seismic isolation for buildings - called suspended columns - is introduced. In this method, the building columns are placed on the hinged cradle seats instead of direct connection to the foundation. In this system, each of the columns is put on a seat hung from its surrounding area by a number of cables, for which cavities are created inside the foundation around the columns. Inside these cavities, the tensile cables are hung. Because of the flexibility of the cables, the suspended seats vibrate during an earthquake and as a result, there is less acceleration in the structure than the foundation. A Matlab code was written to analyze and investigate the response of the system against the earthquake excitations. The findings showed that if this system is used in a building, it results in a significant reduction in the acceleration applied to the structure. A shear key system was used to control the structure for service and lateral weak loads. Moreover, the effect of vertical acceleration on the seismic behavior of the system was also investigated. Effect of the earthquake characteristic period on the system performance was studied and the optimum length of the suspension cables for a variety of the period ranges was suggested. In addition, measures have been taken for long-term functioning of the system and some practical feasibility features were also discussed. Finally, the advantages and limitations of the system were discussed and compared with the other common methods of seismic isolation.

Numerical framework for stress cycle assessment of cables under vortex shedding excitations

  • Ruiz, Rafael O.;Loyola, Luis;Beltran, Juan F.
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.225-238
    • /
    • 2019
  • In this paper a novel and efficient computational framework to estimate the stress range versus number of cycles curves experienced by a cable due to external excitations (e.g., seismic excitations, traffic and wind-induced vibrations, among others) is proposed. This study is limited to the wind-cable interaction governed by the Vortex Shedding mechanism which mainly rules cables vibrations at low amplitudes that may lead to their failure due to bending fatigue damage. The algorithm relies on a stochastic approach to account for the uncertainties in the cable properties, initial conditions, damping, and wind excitation which are the variables that govern the wind-induced vibration phenomena in cables. These uncertainties are propagated adopting Monte Carlo simulations and the concept of importance sampling, which is used to reduce significantly the computational costs when new scenarios with different probabilistic models for the uncertainties are evaluated. A high fidelity cable model is also proposed, capturing the effect of its internal wires distribution and helix angles on the cables stress. Simulation results on a 15 mm diameter high-strength steel strand reveal that not accounting for the initial conditions uncertainties or using a coarse wind speed discretization lead to an underestimation of the stress range experienced by the cable. In addition, parametric studies illustrate the computational efficiency of the algorithm at estimating new scenarios with new probabilistic models, running 3000 times faster than the base case.

XLPE 절연체의 등가 및 가변온도 가속열화실험을 통한 기계적 특성 비교 분석 (A Comparison Study on Mechanical Properties of XLPE Insulation Thermally Degraded at Equivalent and Variable Temperature Conditions)

  • 김태준;황재상;정성훈;김태영
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.73-77
    • /
    • 2022
  • Recently, as the number of years of operation has increased for more than 30 years, interest in evaluating the remaining life of major power facilities such as transformers and ultra-high voltage cables is increasing. In particular, the risk of failure is increasing because the underground transmission XLPE cable has been built since 1980 and has been operating in excess of 30 years of design life or close proximity. Therefore, it is necessary to develop an algorithm to evaluate the residual life of the XLPE cable considering the load to determine the risk of failure. Since load data is large amount of data, it is necessary to make the variable load information equivalent to the time unit first in order to calculate the remaining life of the system quickly. In overseas literature, transformers are reported to be standardized for variable load equivalent conversion formulas, but they have not been reported for ultra-high voltage cables. Therefore, in this paper, whether the equivalent conversion formula of a transformer can be applied to XLPE cables was reviewed through accelerated degradation tests under equivalent and variable temperature conditions, and considerations were studied when evaluating the remaining operating life of XLPE cables based on the experimental results.

Pressure drop characteristics of concentric spiral corrugation cryostats for a HTS power cable considering core surface roughness

  • Youngjun Choi;Seokho Kim
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권2호
    • /
    • pp.19-24
    • /
    • 2023
  • Recently, interest in renewable energy such as solar and wind power has increased as an alternative to fossil fuels. Renewable energy sources such as large wind farms require long-distance power transmission because they are located inland or offshore, far from the city where power is required. High-Temperature Superconducting (HTS) power cables have more than 5 times the transmission capacity and less than one-tenth the transmission loss compared to the existing cables of the same size, enabling large-capacity transmission at low voltage. For commercialization of HTS power cables, unmanned operation and long-distance cooling technology of several kilometers is essential, and pressure drop characteristic is important. The cryostat's spiral corrugation tube is easier to bend, but unlike the round tube, the pressure drop cannot be calculated using the Moody chart. In addition, it is more difficult to predict the pressure drop characteristics due to the irregular surface roughness of the binder wound around the cable core. In this paper, a CFD model of a spiral corrugation tube with a core was designed by referring to the water experiments from previous studies. In the four cases geometry, when the surface roughness of the core was 10mm, most errors were 15% and the maximum errors were 23%. These results will be used as a reference for the design of long-distance HTS power cables.

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur;Sami Arsoy
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.133-154
    • /
    • 2023
  • Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.