• Title/Summary/Keyword: Cable system

Search Result 1,887, Processing Time 0.041 seconds

MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge

  • Chen, Z.Q.;Wang, X.Y.;Ko, J.M.;Ni, Y.Q.;Spencer, B.F.;Yang, G.;Hu, J.H.
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.293-304
    • /
    • 2004
  • The Dongting Lake Bridge is a cable-stayed bridge crossing the Dongting Lake where it meets the Yangtze River in southern central China. Several intensive wind-rain induced vibrations had been observed since its open to traffic in 1999. To investigate the possibility of using MR damping systems to reduce cable vibration, a series of field tests were conducted. Based on the promising research results, MR damping system was installed on the longest 156 stay cables of Dongting Lake Bridge in June 2002, making it the worlds first application of MR dampers on cable-stayed bridge to suppress the wind-rain induced cable vibration. As a visible and permanent aspect of the bridge, the MR damping system must be aesthetically pleasing, reliable, durable, easy to maintain, as well as effective in vibration mitigation. Substantial work was done to meet these requirements. This paper describes field tests and the implementation of MR damping systems for cable vibration reduction. Three-years reliable service of this system proves its durability.

Economic analysis of a 22.9 kV HTS power cable and conventional AC power cable for an offshore wind farm connections

  • Jung, Ga-Eun;Dinh, Minh-Chau;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.60-64
    • /
    • 2018
  • As the offshore wind farms increase, interest in the efficient power system configuration of submarine cables is increasing. Currently, transmission system of the offshore wind farm uses almost AC system. High temperature superconducting (HTS) power cable of the high capacity has long been considered as an enabling technology for power transmission. The HTS cable is a feasible way to increase the transmission capacity of electric power and to provide a substantial reduction in transmission losses and a resultant effect of low CO2 emission. The HTS cable reduces its size and laying sectional area in comparison with a conventional XLPE or OF cable. This is an advantage to reduce its construction cost. In this paper, we discuss the economic feasibility of the 22.9 kV HTS power cable and the conventional AC power cables for an offshore wind farm connections. The 22.9 kV HTS power cable cost for the offshore wind farm connections was calculated based on the capital expenditure and operating expense. The economic feasibility of the HTS power cable and the AC power cables were compared for the offshore wind farm connections. In the case of the offshore wind farm with a capacity of 100 MW and a distance of 3 km to the coast, cost of the 22.9 kV HTS power cable for the offshore wind farm connections was higher than 22.9 kV AC power cable and lower than 70 kV AC power transmission cable.

Feasibility study on the design of DC HTS cable core

  • Sim, Ki-Deok;Kim, Seok-Ho;Jang, Hyun-Man;Lee, Su-Kil;Won, Young-Jin;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2010
  • The renewable energy source is considered as a good measure to cope with the global warming problem and the fossil energy exhaustion. The construction of electric power plant such as an offshore wind farm is rapidly increasing and this trend is expected to be continued during this century. The bulky and long distance power transmission media is essential to support and promote the sustainable expansion of renewable energy source. DC power cable is generally considered as the best solution and the demand for DC electric power has been rapidly increasing. Especially, the high temperature superconducting (HTS) DC cable system begins to make a mark because of its advantages of huge power transmission capacity, low transmission loss and other environmental friendly aspects. Technical contents of DC HTS cable system are very similar to those of AC HTS cable system. However the DC HTS cable can be operated near its critical current if the heat generation is insignificant, while the operating current of AC HTS cable is generally selected at about 50~70% of the critical current because of AC loss. We chose the specifications of the cable core of 'Tres Amigas' project as an example for our study and investigated the heat generation when the DC HTS cable operated near the critical current by some electric and thermal analyses. In this paper, we listed some technical issues on the design of the DC HTS cable core and described the process of the cable core design. And the results of examination on the current capacity, heat generation, harmonic loss and current distribution properties of the DC HTS cable are introduced.

H/W Design for Fault Location System on Underground Power Cable System (고장점 탐색 장치를 위한 H/W 설계)

  • Lee, Jae-Duck;Ryoo, Hee-Suk;Jung, Dong-Hak;Choi, Sang-Bong;Nam, Kee-Young;Jeong, Seong-Hwan;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.709-711
    • /
    • 2005
  • Developing fault location system for underground power cable which can detect its fault location exactly require very high speed data acquisition and signal processing capability. We are developing fault location system which is different from conventional fault locator. This fault location system monitor underground power cable by using on-line speed current sensor and if there are an accident, it record its transient signal and calculate fault location by analyzing it. Signals which acquired when power cable fault arise, showed transient characteristics and its frequency band is very hish. So, to develop fault location system, we designed special high speed data acquisition and signal processing board. In this thesis, we describe on data acquisition and signal processing H/W design for fault location system on underground power cable.

  • PDF

CABLE AUTO-ROUTING PROGRAM 개발

  • 배순삼;최태우;김중래;이익룡
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.19-27
    • /
    • 1993
  • 현재 당사에서 개발한 ROUCAS SYSTEM은 조선 전장 설계 PACKAGE에 있어 혁신적인 SYSTEM으로 부상하고 있고, 앞으로 당사 전장 설계분야에서 많은 M/H감소를 기대하고 있다. ROUCAS SYSTEM은 6개의 MODULE로 구성되어 있고, CABLE AUTO-ROUTING 은 CABLE PLAN MODULE에 속해 있으며 ROUCAS SYSTEM의 핵심이라고 할 수가 있다.

  • PDF

Performance Test of Cooling System for the KEPCO HTS Power Cable (한전 초전도전력케이블 냉각시스템 성능시험)

  • Yang, H.S.;Kim, D.L.;Sohn, S.H.;Lim, J.H.;Choi, H.O.;Lee, B.S.;Choi, Y.S.;Ryoo, H.S.;Hwang, S.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2206-2210
    • /
    • 2007
  • As a power transmission line supplying power to a densely populated city, the high temperature superconducting (HTS) cable is expected to one of the most effective cables with a compact size because of its high current density. The verification of HTS power cable system have been progressed by KEPRI. A cooling system for a 3-phase 100m HTS power cable with 22.9kV/1.25kA was installed and tested at KEPCO's Gochang power testing center in Korea. The system consists of a liquid nitrogen decompression cooling system with a cooling capacity of 3kW and a closed circulation system of subcooled liquid nitrogen. Several performance tests of the cable system with respect to the cooling such as cooling capacity, heat load and temperature stability, were performed at several temperatures. Thermal cycle test, cool-down to liquid nitrogen temperature and warm-up to room temperature, was also performed to investigate thermal cycle influences. The outline of the installed cooling system and performance test results are presented in this paper.

  • PDF

The Accident Hazard and Material Analysis of Power Cable due to Thermal Stress under PL System (PL법 환경하에서 열 충격에 따른 전력케이블의 재료분석 및 사고위험성)

  • Kim, Young-Seok;Shong, Kil-Mok;Jung, Jin-Su;Jung, Jong-Wook;Kim, Sun-Gu;Kim, Sang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • It is impossible to database(DB) the patterns of power cable events and cause analysis of faulted cable because the product liability(PL) law have been enforced in Korea, since 2002. In additions, simulation and pattern of power cable events are needed for DB system under accelerated deterioration. In this paper, we tested for resistance to cracking of cable below the 22.9kV class due to thermal stresses. This method of exam is following IEC 60811-3-1(Common test methods for insulating and sheathing materials of electric cables). From the results, The 22.9kV calss A power cable was discolored on the surface and significantly reduced in the longitudinal direction. As the thermal weight properties of A power cable was definitely varied, we are able to guess the problem of manufacture. If the cable was defect by the manufacture, the victims would be able to claim for damage in the PL system.

Mechanical and Electrical Performance of 180kV HVDC Submarine Cable System (180kV HVDC 해저케이블 기계적/전기적 특성 평가)

  • Kim, N.Y.;Lee, T.H.;Lee, S.J.;Ji, B.K.;Kim, J.N.;Jeon, S.I.;Yun, H.S.;Joung, S.K.;Kang, C.H.;An, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.616-618
    • /
    • 2007
  • This paper describes the mechanical and electrical test on HVDC submarine cable, Flexible Repair Joint and termination for 180kV. This HVDC submarine cable was manufactured using LS cable's unique skill and would be applied the HVDC submarine cable system in korea. The performance test consist of mechanical test and electrical test. The tensile bending test and tensile test was done as the mechanical test and Electrical test is DC voltage and Impulse test. The tensile bending test carried out 6 times(double of specified times) for maximum reliability. The DC test voltage is $\pm$400kV/1hr. We estimate the lower limit of DC breakdown voltage is 600kV. The impulse test voltage is $\pm$800kV/10shots. The type of developed cables is the MI type. Its insulation consist of paper tapes impregnated with a high viscosity oil. The development of new HVDC cable is available for HVDC underground or submarine power transmission. The developed HVDC cable, FRJ and termination have passed the mechanical and electrical test successfully and showed excellent performance.

  • PDF

Electric Leakage Point Detection System of Underground Power Cable Using Half-period Modulated Transmission Waveform and Earth Electric Potential Measurement (반주기 변조된 송신파형과 대지전위 측정을 이용한 지중 케이블 누전 고장점 탐지 시스템)

  • Jeon, Jeong Chay;Yoo, Jae-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2113-2118
    • /
    • 2016
  • The precise detection of electric leakage point of underground power cable is very important to reduce cost and time of maintenance and prevent electric shock accident through expedite repair of electric leakage point. This paper proposes a electric leakage point detection system underground power cable using of half-period modulated transmission waveform and earth electric potential measurement. The developed system is composed of transmitter to generate the wanted pulse waveform, receiver to measure and display earth electric potential by the transmitted pulse in electric leakage point and PC Software program to display of GPS coordinate on detection cable line. The performance of the electric leakage point detection system was tested in the constructed underground cable leakage detection test bed. The test results on signal generation voltage precision of signal transmitter, mean detection earth voltage, mean detection leakage current and electric leakage point detection error showed the developed system can be used in electric leakage point detection underground power cable.

Reliability Assesment Test on the Regular Maintenance of HTS Cable System (초전도케이블시스템 유지.보수에 따른 신뢰성 평가 시험)

  • Sohn, Song-Ho;Yang, Hyung-Suk;Lim, Ji-Hyun;Choi, Ha-Ok;Kim, Dong-Lak;Ryoo, Hee-Suk;Hwang, Si-Dole
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.361-361
    • /
    • 2009
  • KEPCO High Temperature Superconducting (HTS) cable system rated with $3\Phi$, 22.9kV, 1250A was laid in 2006, and the long term test is in progress. The HTS cable system with the cooling system has been operated below cryogenic temperature. That environment exposes the system to the thermo-mechanical stress due to the significant temperature difference, and the cooling system has moving parts for the forced circulation of the coolant. Therefore the HTS cable system experiences thermal fatigue and moving part such as liquid nitrogen pump need a regular replacement every 5000 hours Building the assessment criterion, the maintenance procedure was established and regular preventive maintenance was done; improvement of the termination structure and the replacement of the bearing of liquid nitrogen pump. Following the proper process, the reliability assessment test including He leakage detection and the stability of flow rate was performed. This paper describes the process and result of the first regular maintenance of KEPCO HTS cable system

  • PDF