• Title/Summary/Keyword: Cable cutting

Search Result 36, Processing Time 0.023 seconds

The Effects of Optical Cable Fault on Customer Complaints (광케이블 고장이 고객 불만에 미치는 영향 연구)

  • Jung, So-Ki;Cha, Kyoung Cheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.325-333
    • /
    • 2015
  • In this paper, we are aim to analysis the effects of optical cable fault on customer complaints. We considered several causes: the elapse time to allow repair from the optical cable fault, whether working day or not, seasonality and human error, external construction, optical cable cutting or core banding that is controllable causes and natural disasters, vehicle crash, fire that is uncontrollable causes. The results of analysis are as follows: First, customer complaints increase through indifferencial relationship when using the production function for the number of expected victims and elapsed time due to the optical cable fault. Second, not only the elapsed time but also controllable variables, human error, external construction, the core cut occurs, increased customer complaints due to optical cable faults.

Case Study of Immersed Tunnel Instrumentation Management Using Wireless System (지중무선 시스템을 이용한 침매터널 구간 계측관리 사례연구)

  • Han, Sang-Wook;Kim, Byung-Hee;Han, Byung-Won;Lee, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.768-773
    • /
    • 2009
  • Measuring method being applied for off-shore works is performed by using data logger or manual measuring instrument with wiring the cable connected from the sensor up to the position where measuring is allowed.(upper part of embankment or marine structure) Measuring management by using existing measuring method may be acceptable on the condition that the ground deformation volume(vertical, horizontal) is generally minimal and the site condition is good. But loss of measuring instrument, sensor cable failure or cutting is taken place frequently due to significant change of ground behavior caused by an external force change(embankment, excavation) under very soft ground condition(N value below 0-4). In case of the marine works, in particular, loss rate of measuring instrument is highly represented due to the factors of working barge anchoring, constructional interference and natural disaster. In order to solve these problems, measuring management was performed with employing underground wireless system at the immersed tunnel site. Measuring data was obtained freely under the marine environment by using underground wireless communication and cable cutting potential by ground behavior could be reduced. Measuring cost savings and its installation convenience were maximized by way of off-shore tower installation or cabling and by minimizing constructional interference of off-shore working barge. This case of measuring management was accomplished successfully.

  • PDF

A Study on the Form Finding and Optimal Cutting Pattern Analysis Technique of Membrane Structures (막구조물의 형상탐색 및 최적재단도 해석기법에 관한 연구)

  • 서삼열
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.457-464
    • /
    • 1999
  • The object of this study is form finding, stress-strain analysis and cutting pattern analysis of membrane structures under the following assumptions : (1) material is linearly elastic (2) stress state is plane stress. The cable and membrane structures undergo large deformation because of its highly flexibility, therefore, we must take account of its geometric nonlinearity. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the form finding analysis to determine the initial equilibrium shape. Second step is the stress-strain analysis to investigate the behaviors of structures under various external loads. Once a stationary shape has been fount a cutting pattern based on the form finding analysis may be generated for manufacturing procedure. In this paper, form finding, stress-strain analysis and cutting pattern analysis is carried out for applying to Seoguipo worldcup soccer stadium roof structures and optimal cutting pattern analysis technique is proposed.

  • PDF

A Study on the Possibility of Electrical Fires due to the Short Circuit and Ground Fault of Power Cable Supported by an Iron Fence (철제펜스로 지지된 동력배선의 단락.지락에 의한 전기화재 발생 개연성 연구)

  • Kim, Jeong-Hun;Park, Byoung-Ki;Song, Jong-Hyeok;Jung, Ki-Chang
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.41-45
    • /
    • 2007
  • Short circuit and ground fault account for the primary causes of electrical fires. In this research, real-scale experiments were conducted to assess the possibility of electrical fires due to these causes. The experiment conditions were identical with an actual fire accident, in which the power cable was supported by an iron fence. The purposes of this research are to investigate the short circuit caused by wire cutting, the conductivity of the iron fence depending on its coating conditions, and the ground fault of one wire or two wires in an effort to reconstruct the fire accident. The test results show that, owing to the instant operation of circuit breaker in the moment of short circuit or ground fault, the generated ignition energy is far less than necessary to start an ignition. Therefore it is concluded that electrical fire is highly unlikely if the electric system is protected by a circuit breaker with normal functions.

Optical Line Monitoring System Using Optical Cable Closure (광케이블 접속함체를 이용한 광선로 감시시스템)

  • Jung, So-Ki;Chae, Woong-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.592-602
    • /
    • 2013
  • The purpose of this study is to optical cable closure and fiber line monitoring system. The current optical cable closure cases have not had any systems that help the central control station recognize opening as well as closing the cases in real-time when opening B2B and B2C lines. to solve this problem, it is considered to create systems that go off alarms, real-time fault location immediately, set alarms for open and close monitoring optical cable closure, and inspect regularly whether optical cables are deficient when monitoring the optical line in real-time and cutting them, in this paper, the monitoring system whose the central control station finds an optical signal block immediately and goes off the alarms when line workers separate components like a connector or a tray from the optical cable closure through OTDR. this study can contribute to stabilize the network quality through the quick and effective operation of the cables.

Harvesting Productivity and Cost of Clearcut and Partial Cut in Interior British Columbia, Canada

  • Renzie, Chad;Han, Han-Sup
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • Clearcutting has been the dominant harvesting method in British Columbia (representing 95% of the total area harvested annually). However forest managers are increasingly recommending the use of alternative silvicultural systems and harvest methods, including various types of partial cutting, to meet ecological and social objectives. In this study we compared harvesting productivity and harvesting costs between treatments through detailed and shift level time studies in 300-350 year-old Interior Cedar-Hemlock stands in British Columbia, Canada. Recommendations for improving operational planning/layout and the implementation of clearcut and partial cutting silvicultural systems were made. Harvesting costs varied in the ground-based clearcut treatments from $10.95/$m^3$ - $15.96/$m^3$ and $16.09/$m^3$ - $16.93/$m^3$ in the group selection treatments. The ground-based group retention treatment had a cost of $13.39/$m^3$, while the cable clearcut had a cost of $15.70/$m^3$. An understanding of the traditional and alternative wood products that could be derived from the harvested timber was imperative to increasing the amount of merchantable volume and reducing the corresponding harvesting costs. Stand damage was greatest in the group selection treatments; however, mechanized felling showed an increase in stand damage over manual felling while grapple skidding showed a decrease in skidding damage compared to line skidding.

  • PDF

Specific Heat and Thermal Conductivity of XLPE Insulator and Semiconductive Materials for 154kV Power Cable (154kV 전력케이블용 XLPE 절연체와 반도전 재료의 비열 및 열전도)

  • Lee, Kyoung-Yong;Yang, Jong-Seok;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.19-24
    • /
    • 2005
  • To improve mean-life and reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconductive materials in 154kV underground power transmission cable. Specimens were respectively made of sheet form with EVA, EEA and EBA added 30wt%, carbon black, and the other was made of sheet form by cutting XLPE insulator in 154kV power cable. Specific heat (Cp) and thermal conductivity were· measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from 20[$^{\circ}C$] to 90[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$}], 55[$^{\circ}C$] and 90[$^{\circ}C$]. In case of semiconductive materials, the measurement temperature ranges of specific heat were from 20[$^{\circ}C$] to 60[$^{\circ}C$], and the heating rate was 1[$^{\circ}C$/min]. And the measurement temperatures of thermal conductivity were 25[$^{\circ}C$] and 55[$^{\circ}C$]. From these experimental results, both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.

  • PDF

Cable Effect Analysis Inside an Electrically Large Structure from an External Electromagnetic Waves (전자파에 의한 대형구조물 내부 케이블 영향 해석)

  • Lee, Jae-Min;Yoon, Seong-Sik;Lee, Jae-Wook;Han, Jung-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.155-158
    • /
    • 2017
  • With the help of technical development in the electronic industries, the electronic devices employing the cutting-edged technology are spread in all the area requiring electromagnetic communications. Especially, because of the presence of electronic devices in a variety of research fields like automotive vehicle, train, and aircraft, the research area such as the malfunction and critical damage of the internal system and microwave devices due to the unexpected radiated high-powered EM effects are very important even for the possible occurrence of human damage. In this paper, the effects of electromagnetic fields into the cable connecting the electronic devices and many sensors inside the target structure is treated because of potential malfunction or hardware disorders. In addition, correlation function and transmission line theory have been employed for the analysis of the induced current on the cable inside an electrically large resonant structure.

A Study on Economical Analysis of Yarding Operation by Cable Crane (케이블클레인을 이용(利用)한 집재작업(集材作業)의 경제성(經濟性)에 관(關)한 연구(硏究))

  • Woo, Bo Myeong;Park, Jong Myeong;Lee, Joon Woo;Chung, Nam Hun
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.4
    • /
    • pp.413-418
    • /
    • 1990
  • Since 1945, the periodical reforestation projects considered as the fundamental apparatus of the forest policy of the Government have been continuously carried out during last 40 years in Korea. As a result, some of the forests are ready to be harvested, especially in well-managed plantations as well as in the natural forests. This requires to pay more attention to harvesting the timber rather than planting trees. At the present, such timber harvesting operations such as cutting, felling, bucking, and skidding and yarding, particularly yarding operations in mountain areas with harsh terrains are in the most cases depend upon man power. However, the yarding operations should be more mechanized in the near future in Korea mainly because of the high cost of labour couppled with the lack of labour in forested areas. The Forest Work Training Center attached to the Forest Administration imported and tested the smallsized cable crane(K-300) with movable tower. The result of economic analysis of the yarding operation expenditures shows that the cable crane yarding costs more than the man yarding at the present time. As the labour cost will gradually increase and the efficiency of machine operation will improve, the results of the study indicates that the yarding operation by cable crane will be more cost-effective in the future.

  • PDF

Specific Heat and Thermal Conductivity Measurement of XLPE Insulator and Semiconducting Materials (XLPE 절연층과 반도전층 재료의 비열 및 열전도 측정)

  • Lee Kyoung-Yong;Yang Jong-Seok;Choi Yong-Sung;Park Dae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.6-10
    • /
    • 2006
  • To improve mean-life and reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconducting materials in 154(kV) underground power transmission cable. Specimens were respectively made of sheet form with EVA, EEA and EBA added $30[wt\%],$ carbon black, and the other was made of sheet form by cutting XLPE insulator in 154(kV) power cable. Specific heat (Cp) and thermal conductivity were measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]\;to\;90[^{\circ}C],$ and the heating rate was $1[^{\circ}C/mon].$ And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C]\;and\;90[^{\circ}C].$ In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]\;to\;60[^{\circ}C],$ and the heating rate was $1[^{\circ}C/mon].$ And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C].$ In addition we measured matrix of semiconducting materials to show formation and growth of carbon black in base resins through the SEM. From these experimental results, both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature.