DOI QR코드

DOI QR Code

Cable Effect Analysis Inside an Electrically Large Structure from an External Electromagnetic Waves

전자파에 의한 대형구조물 내부 케이블 영향 해석

  • Lee, Jae-Min (Department of Electronics and Information Engineering, Korea Aerospace University) ;
  • Yoon, Seong-Sik (Department of Electronics and Information Engineering, Korea Aerospace University) ;
  • Lee, Jae-Wook (Department of Electronics and Information Engineering, Korea Aerospace University) ;
  • Han, Jung-Hoon (National Security Research Institute)
  • 이재민 (한국항공대학교 항공전자정보공학부) ;
  • 윤성식 (한국항공대학교 항공전자정보공학부) ;
  • 이재욱 (한국항공대학교 항공전자정보공학부) ;
  • 한정훈 (국가보안기술연구소)
  • Received : 2016.10.07
  • Accepted : 2017.02.07
  • Published : 2017.02.28

Abstract

With the help of technical development in the electronic industries, the electronic devices employing the cutting-edged technology are spread in all the area requiring electromagnetic communications. Especially, because of the presence of electronic devices in a variety of research fields like automotive vehicle, train, and aircraft, the research area such as the malfunction and critical damage of the internal system and microwave devices due to the unexpected radiated high-powered EM effects are very important even for the possible occurrence of human damage. In this paper, the effects of electromagnetic fields into the cable connecting the electronic devices and many sensors inside the target structure is treated because of potential malfunction or hardware disorders. In addition, correlation function and transmission line theory have been employed for the analysis of the induced current on the cable inside an electrically large resonant structure.

전자, 통신 기술의 발달로 대부분의 장소에서 전자기기가 존재한다. 자동차, 열차, 항공기 등 다양한 장소에서 전자기기의 활용이 증가된 만큼 고출력 전자기파로 인한 오작동과 하드웨어의 치명적인 손상을 확인할 수 있는 안전성을 연구하는 것이 중요하게 되었다. 구조물 내부에 전자기기 및 여러 센서를 연결하는 케이블은 전자기파에 의한 오작동을 초래할 수 있는 원인 중 하나이기 때문에 전자파 영향에 대한 해석이 필수적이다. 본 논문에서는 상관관계 함수와 전송이론을 이용하여, 전기적으로 큰 공진기 내부에 존재하는 케이블에 유기되는 전류를 계산해 외부 전자기파에 의한 영향을 해석하였다.

Keywords

References

  1. D. Hill, Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, IEEE Press, 2009.
  2. I. Junqua, J. P. Parmantier, and P. Degauque, "Field-to-wire coupling in an electrically large cavity: A semianalytic solution", IEEE Trans. EMC, vol. 52, no. 4, pp. 1034-1040, Nov. 2010.
  3. D. A. Hill, "Boundary fields in reverberation chambers", IEEE Trans. EMC, vol. 47, no. 2, pp. 281-288, May 2005.
  4. I. Junqua, F. Issac, and J. -P. Parmantier, "A network formulation of the power balance method for high frequency coupling", Electromagnetics, vol. 25, no. 7, pp. 603-622, Oct. 2005. https://doi.org/10.1080/02726340500214845
  5. B. L. Michielsen, C. Fiachetti, "Covariance operator, green functions and canonical stochastic electromagnetic fields", Radio Science, vol. 40, no. 5, pp 1-12, 2006.
  6. D. A. Hill, "Plane wave integral representation for fields in reverberation chambers", IEEE Trans. Electromagn. Compat., vol. 40, no. 3, pp. 209-217, Aug. 1998. https://doi.org/10.1109/15.709418
  7. C. Fiachetti, B. Michielsen, "Electromagnetic random field models for analysis of coupling inside mode turned chambers", Electron. Lett., vol. 39, no. 24, Nov. 2003.