• Title/Summary/Keyword: Cable cutting

Search Result 36, Processing Time 0.02 seconds

Analytical model for estimation of digging forces and specific energy of cable shovel

  • Stavropoulou, M.;Xiroudakis, G.;Exadaktylos, G.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.23-51
    • /
    • 2013
  • An analytical algorithm for the estimation of the resistance forces exerted on the dipper of a cable shovel and the specific energy consumed in the cutting-loading process is presented. Forces due to payload and to cutting of geomaterials under given initial conditions, cutting trajectory of the bucket, bucket's design, and geomaterial properties are analytically computed. The excavation process has been modeled by means of a kinematical shovel model, as well as of dynamic payload and cutting resistance models. For the calculation of the cutting forces, a logsandwich passive failure mechanism of the geomaterial is considered, as has been found by considering that a slip surface propagates like a mixed mode crack. Subsequently, the Upper-Bound theorem of Limit Analysis Theory is applied for the approximate calculation of the maximum reacting forces exerted on the dipper of the cable shovel. This algorithm has been implemented into an Excel$^{TM}$ spreadsheet to facilitate user-friendly, "transparent" calculations and built-in data analysis techniques. Its use is demonstrated with a realistic application of a medium-sized shovel. It was found, among others, that the specific energy of cutting exhibits a size effect, such that it decreases as the (-1)-power of the cutting depth for the considered example application.

Statistical analysis of the energy for cable cutting (케이블 절단에 필요한 에너지 통계적 분석)

  • Choi, Chang-Sun;Kang, Won-Kyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.400-403
    • /
    • 2011
  • We performed Instron and Impact tests to estimate necessary explosive charge weight for cutting the cable whose diameter is 22 mm. The cutting energy measured by Instron was 21.3 J. Impact test were performed 8 times each at 5 different energies. The Impact test results were analysed by Probit methods. The cutting energy was calculated 37.7 J with 99.99% probability at 99% confidence, which is roughly equivalent to 250 mg of Zirconium potassium Perchlorate (ZPP).

  • PDF

Determination of Explosive Weight for Cable Cutter through Impact Test (Impact Test를 통한 케이블커터의 화약량 산정)

  • Choi, Chang-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.16-22
    • /
    • 2012
  • We performed impact test to estimate necessary explosive charge weight for cutting the cable whose diameter is 22 mm. The impact test results were analyzed by Probit method. The cutting energy was calculated 37.7 J with 99.99% probability at 99% reliability compared to the average energy of 24.9 J. The cable was cut 3 times without failure with 150 mg of Zirconium Potassium Perchlorate (ZPP), which was considered to generate 24.5 J of mechanical energy with assumption that only 10% of explosive energy converts to mechanical energy. The calculated energy from measured pressure with 150 mg ZPP was 26.1 J, which is almost same with both impact test result and expected mechanical energy. We can argue that the cable can be cut with 99.99% probability at 99% reliability by 230 mg of ZPP.

A Study on Shield Wire Stripping of Micro Coaxial Cable for Medical Device Using Nd:YAG Laser (Nd:YAG 레이저를 이용한 의료기기용 마이크로 동축케이블의 실드선 탈피에 관한 연구)

  • Lee, Jeong-Wan;Kim, Jung-Hoon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.35-41
    • /
    • 2006
  • Recently, as ultrasonic medical devices are gradually developed, many of those requires smaller and more precision coaxial cables in probe. So, the use of micro coaxial cable becomes an efficient solution for ultrasonic machine. However, there are many difficulties in stripping micro coaxial cable by traditional mechanical process. In this paper, we use the Nd-YAG laser for the efficient stripping of conduct wire of cable. We propose a new method to strip the shield wire of micro coaxial cable. Through some experiments, we found that there is a new possibility in the proposed method. Also, in order to enhance the performance, we propose a preprocess of the cable before stripping.

  • PDF

Development of Cable Management System for Ship (선박 전선 관리 시스템 개발)

  • Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1987-1992
    • /
    • 2008
  • In recent years, the shape of ship building have been advanced. Thus the system is complex and cable is much used in ship. In this paper, Dijkstra algorithm is used to solve the shortest path of cable laying. Cable laying is given much weight in fable management system of ship. The developed cable management system is cut down on expenses and is improve the operation efficiency for ship building. Therefore, the developed cable management system can be used a support system in order to achieve a management target of company.

Shield Wire Stripping of Micro Coaxial Cable for Medical Device Using Laser (레이저를 이용한 의료기기용 미세 동축케이블의 실드선 탈피)

  • Lee, Jeong-Wan;Kim, Jung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.64-71
    • /
    • 2009
  • Recently as ultrasonic medical devices are gradually developed, many of those require smaller and more precision coaxial cables in the probe. So, the use of micro coaxial cable becomes an efficient solution for ultrasonic machine. However, there are many difficulties in stripping micro coaxial cable by traditional mechanical process. In this paper we use the Nd:YAG laser for the efficient striping of conduct wire of cable. Through some experiments, we found that there is a new possibility in the proposed method. Also, we propose a pre-process of the cable before stripping in order to enhance the performance.

Productivity and Cost of Tree-length Harvesting Using Cable Yarding System in a Larch (Larix leptolepis) Clear-cutting Stand

  • Jeong, Eungjin;Cho, Koohyun;Cho, Minjae;Choi, Byoungkoo;Cha, Dusong
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • The purpose of this study was to examine productivity and cost of tree-length harvesting using cable yarding system in a larch (Larix leptolepis) clear-cutting stand located in Pyeongchang-gun, Gangwon-do. We used tree-length harvesting method using cable yarding system with a tower yarder HAM300. The productivity was $17.6m^3/hr$ for felling, $12.4m^3/hr$ for delimbing, $4.2m^3/hr$ for yarding, and $8.1m^3/hr$ for processing. The total cost of the harvesting system was $48,381won/m^3$, which was majorly composed of yarding operation cost, at $40,169won/m^3$ (79.3%), while felling had the lowest cost at $1,154won/m^3$ (4.1%). Major factors affecting felling and processing productivity was tree volume and the number and thickness of branches for delimbing productivity. In addition, we suggest that training and education for machine operators were critical to improve yarding productivity.

A Study on the Geodesic Line Algorithms for Cutting Pattern Generation of Membrane Structures (막 구조물의 재단도 생성을 위한 지오데식 라인 알고리즘에 관한 연구)

  • 배종효;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.357-364
    • /
    • 2000
  • The three main processes involved in the design of stressed membrane surface are surface form-finding, stress analysis and cutting pattern generation. The last process, cutting pattern generation, is considered as a very important procedure in the aspect of the practical design for the fabric membrane surface. In this paper, The cutting pattern generation technique using the geodesic line algorithms is first introduced. And the numerical examples resulting from this technique are presented. Cable elements are used for the approximating membrane surface and two kinds of model, square line and central line model, are used in pattern generation. Finally, a number of different cutting pattern generation for the same membrane surface is carried out and the numerical results are compared each

  • PDF

A Shape Finding and Cutting Pattern Determination for Membrane Structures (막 구조물에 관한 형상 탐색과 재단도 결정법)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.175-182
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions : (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, (1) shape finding analysis formulation and an example, (2) cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF

A Study on the Cutting Pattern Determination for Fabric Structures (막 구조물의 재단 패턴 결정에 관한 연구)

  • Choi, Ho;Lee, Jang-Bog;Kim, Jae-Yeol;Sur, Sam-Uel;Kwon, Taek-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.266-273
    • /
    • 1998
  • The object of this study is shape finding and cutting pattern generation of membrane structures under the following assumptions: (1) material is linearly elastic (2) stress state is plane stress. Cable and membrane structures should introduce the nonlinear analysis considering geometric nonlinearity because these structures deform largely under the external loads. The analysis procedure is consisted of three steps considering geometric nonlinearity unlike any other structures. First step is the shape finding analysis to determine the initial equilibrium shape. Second step is the stress-deformation analysis to investigate the behaviors of structures under various external loads. Once a satisfactory shape has been found, a cutting pattern based on the shape finding analysis may be generated from the view point of construction. In this paper, after shape finding analysis, cutting pattern determination procedure using weighted least-square minimization flattening method and some results are presented.

  • PDF