• Title/Summary/Keyword: Cable bridge

Search Result 753, Processing Time 0.024 seconds

Stable modal identification for civil structures based on a stochastic subspace algorithm with appropriate selection of time lag parameter

  • Wu, Wen-Hwa;Wang, Sheng-Wei;Chen, Chien-Chou;Lai, Gwolong
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.331-350
    • /
    • 2017
  • Based on the alternative stabilization diagram by varying the time lag parameter in the stochastic subspace identification analysis, this study aims to investigate the measurements from several cases of civil structures for extending the applicability of a recently noticed criterion to ensure stable identification results. Such a criterion demands the time lag parameter to be no less than a critical threshold determined by the ratio of the sampling rate to the fundamental system frequency and is firstly validated for its applications with single measurements from stay cables, bridge decks, and buildings. As for multiple measurements, it is found that the predicted threshold works well for the cases of stay cables and buildings, but makes an evident overestimation for the case of bridge decks. This discrepancy is further explained by the fact that the deck vibrations are induced by multiple excitations independently coming from the passing traffic. The cable vibration signals covering the sensor locations close to both the deck and pylon ends of a cable-stayed bridge provide convincing evidences to testify this important discovery.

Seismic Analysis of a 3-dimensional Cable-Stayed Bridge with an Unsymmetric Girder Cross-section (주형단면의 비대칭성을 고려한 3차원 사장교의 지진해석)

  • Kim, Chul Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.11-20
    • /
    • 1992
  • In general, the cross-section of a girder of a bridge has only one axis of symmetry. Therefore, lateral forces such as earthquake and wind may cause torsion coupled with lateral bending in the gider. This induces additional stresses especially in cables arranged in double-planes. Since this effect cannot be considered by using the conventional frame elements, the stiffness and the mass matrices of the geometrically nonlinear thin-walled frame element have to be used in order to model the girder. Theoretical development and verification of the frame element used in this study were made through a-previously presented paper. In this paper, seismic analysis of a three dimensional cable-stayed bridge considering the unsymmetry of the girder cross-section is performed to investigate the coupled flexural-torsional behaviors.

  • PDF

Sensor enriched infrastructure system

  • Wang, Ming L.;Yim, Jinsuk
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.309-333
    • /
    • 2010
  • Civil infrastructure, in both its construction and maintenance, represents the largest societal investment in this country, outside of the health care industry. Despite being the lifeline of US commerce, civil infrastructure has scarcely benefited from the latest sensor technological advances. Our future should focus on harnessing these technologies to enhance the robustness, longevity and economic viability of this vast, societal investment, in light of inherent uncertainties and their exposure to service and even extreme loadings. One of the principal means of insuring the robustness and longevity of infrastructure is to strategically deploy smart sensors in them. Therefore, the objective is to develop novel, durable, smart sensors that are especially applicable to major infrastructure and the facilities to validate their reliability and long-term functionality. In some cases, this implies the development of new sensing elements themselves, while in other cases involves innovative packaging and use of existing sensor technologies. In either case, a parallel focus will be the integration and networking of these smart sensing elements for reliable data acquisition, transmission, and fusion, within a decision-making framework targeting efficient management and maintenance of infrastructure systems. In this paper, prudent and viable sensor and health monitoring technologies have been developed and used in several large structural systems. Discussion will also include several practical bridge health monitoring applications including their design, construction, and operation of the systems.

Implementation of A Bridge Monitoring System Based on Ubiquitous Sensor Networks (USN기반의 교량 모니터링 시스템 구현)

  • Lee, Sung-Hwa;Jeon, Min-Suk;Lee, An-Kyu;Kim, Jin-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • The proposed real-time structural health monitoring(SHM) system in past transferred and received data, central server gathered data from sensors, through coaxial cable. an immense sum of money is required to structure sensor network using coaxial cable. This paper proposes USN-based structural health monitoring(SHM). AIso, this paper designs and realizes prototypes according to proposed SHM. The value of sensing data obtained through HSDPA transfer to the BMS(Bridge Monitoring Server) passing through the TCP / IP socket by building two-way communication system, We have implemented a complete graph converting full system.

  • PDF

Damage detection of bridges based on spectral sub-band features and hybrid modeling of PCA and KPCA methods

  • Bisheh, Hossein Babajanian;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.179-200
    • /
    • 2022
  • This paper proposes a data-driven methodology for online early damage identification under changing environmental conditions. The proposed method relies on two data analysis methods: feature-based method and hybrid principal component analysis (PCA) and kernel PCA to separate damage from environmental influences. First, spectral sub-band features, namely, spectral sub-band centroids (SSCs) and log spectral sub-band energies (LSSEs), are proposed as damage-sensitive features to extract damage information from measured structural responses. Second, hybrid modeling by integrating PCA and kernel PCA is performed on the spectral sub-band feature matrix for data normalization to extract both linear and nonlinear features for nonlinear procedure monitoring. After feature normalization, suppressing environmental effects, the control charts (Hotelling T2 and SPE statistics) is implemented to novelty detection and distinguish damage in structures. The hybrid PCA-KPCA technique is compared to KPCA by applying support vector machine (SVM) to evaluate the effectiveness of its performance in detecting damage. The proposed method is verified through numerical and full-scale studies (a Bridge Health Monitoring (BHM) Benchmark Problem and a cable-stayed bridge in China). The results demonstrate that the proposed method can detect the structural damage accurately and reduce false alarms by suppressing the effects and interference of environmental variations.

Experimental and numerical studies on VIV characteristics of π-shaped composite deck of a cable-stayed bridge with 650 m main span

  • Wei Lei;Qi Wang;Haili Liao;Chengkai Shao
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.93-107
    • /
    • 2024
  • A π-shaped composite deck in the form of an open section is a type of blunt body that is highly susceptible to wind loads. To investigate its vortex-induced vibration (VIV) performance, a large-scale (1/20) section model of a cable-stayed bridge with a main span of 650 m was tested in a wind tunnel. The vibration suppression mechanism of the countermeasures was analyzed using computational fluid dynamic. Experimental results demonstrate that the vertical and torsional VIVs of the original section can be suppressed by combining guide plates with a tilt angle of 35° and bottom central stabilizing plates as aerodynamic countermeasures. Numerical results indicate that the large-scale vortex under the deck separates into smaller vortices, resulting in the disappearance of the von Kármán vortex street in the wake zone because the countermeasures effectively suppress the VIVs. Furthermore, a full-bridge aeroelastic model with a scale of 1/100 was constructed and tested to evaluate the wind resistance performance and validate the effectiveness of the proposed countermeasures.