• Title/Summary/Keyword: Cable Arrangement

Search Result 54, Processing Time 0.022 seconds

Proper Cable Arrangement Selection by Induced Voltage Evaluation of DC Cable in AC/DC Hybrid Combined Transmission Systems (AC/DC 하이브리드형 혼합송전계통에서 DC 케이블의 유도전압평가에 의한 적정배열 선정)

  • Son, Yong-Dae;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.680-688
    • /
    • 2015
  • Hybrid type combined transmission systems is being operated by AC and DC line at the same space will be expanded instead of the overhead line. However, such hybrid type combined system has problem like the arrangement selection of DC cable for effective system operation. In this paper, to select the proper arrangement of DC cable, induced voltage of DC cable influenced by AC cable was analyzed in case of several type arrangement of DC cable. Such induced voltage is in detailed analyzed not only in case of steady, but transient state. The arrangement which has the lowest induced voltage is selected as the proper one. EMTP/ATPDraw is used for modeling and analysis of hybrid type combined transmission system.

Consideration of cable arrangement for the same phase multi-cable installa (동상다조 포설시 케이블 배치에 대한 고찰)

  • Oh, J.O.;Han, K.J.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1134-1136
    • /
    • 1998
  • In case of multi-cable for one ph current in the same phase cable may be unba according to cable arrangement in underg system. In this paper, we described the way to ba current in each cable of same phase. This solut to make the impedence of each cable equal caculated the impedence of each cable for all ki cable arrangement in accordance with JCS168D finally found the cable arrangement of impedence.

  • PDF

Validity of the Nielsen-type hanger arrangement in spatial arch bridges with straight decks

  • Mirian Canovas-Gonzalez;Juan M. Garcia-Guerrero;Juan J. Jorquera-Lucerga
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.51-69
    • /
    • 2023
  • In tied-arch bridges, a properly designed connection between the arch and the deck may become crucial, since the forces in the structure may be significantly reduced. This implies substantial material savings and, consequently, cheaper constructions. The introduction of the Nielsen cable arrangement (composed of V-shaped inclined hangers) in the last century was a milestone because it was able to reduce deflections and bending moments both in the arch and in the deck. So far, the Nielsen cable arrangement has proven to be successful in traditional vertical arch bridges. However, despite its advantages, it has not been widely applied to spatial arch bridges. Thus, this article analyses the difference between the structural behavior of spatial arch bridges with Nielsen-type cable arrangements with respect to those with classical vertical hanger configurations. The main goal is to verify whether the known effectiveness of the Nielsen cable arrangement for classical arch bridges is still preserved when applied to spatial arch bridges. In order to achieve this objective, and as the first part of our study, a set of different all-steel bridges composed of vertical and inclined arches with straight decks have been compared for both cable arrangements. As a major conclusion, for planar vertical arch bridges, the Nielsen-type cable arrangement is always the most effective. In addition, it also seems that, for spatial arch bridges composed of a straight deck and an inclined arch, it still keeps most of its effectiveness as long as the arch is moderately inclined.

Analysis of Lightning-Induced Overvoltage and Current in Buried Underground Distribution Cable using EMTP/MODELS (EMTP/MODELS를 이용한 지중 배전선로의 뇌유도 과전압 및 전류 분석)

  • Seo, Hun-Chul;Han, Jun;Kim, Chul-Hwan;Choi, Sun-Kyu;Lee, Byung-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1077-1082
    • /
    • 2012
  • This paper analyzes the lightning-induced overvoltage and current in buried underground distribution cable. Based on analytical expressions, the lightning-induced overvoltage and current in buried underground distribution cable is calculated by EMTP/MODELS. The modeling is verified by comparing with the results in reference. Also, the type and buried arrangement of cables used in domestic distribution line are modeled by EMTP/ATPDraw. The various simulations according to the type and buried arrangement of cable are performed and the simulation results are analyzed.

EMTP-Analysis of Sheath Circulating Current on Underground Transmission Cables (EMTP를 이용한 지중 송전 케이블의 시스 순환전류 분석)

  • Ha, C.W.;Kim, J.N.;Lee, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.213-215
    • /
    • 2001
  • This paper describes an improved analysis method for sheath circulating current on three-underground transmission cables using EMTP(Electromagnetic Transient Program). Author studied diversely the sheath circulating current on three-underground cables depending on the various length rate, the phase arrangement, and the grounding resistance of the sheath in the cross-bonded section. It was clear that very large circulating current is generated in cable systems due to unbalanced length rate and phase arrangement in the cross-bonded section. The analysing method for two or more underground cables will be really Improved for cable system utility.

  • PDF

Analysis on Proper Cable Arrangement and Duct Distance to Maximize Ampacity of Underground Distribution Cable (지중배전케이블의 허용전류용량 증대를 위한 적정 회선배치 및 관로 이격거리 분석)

  • Jo, Ara;Moon, Won-Sik;Lee, Seung-Jae;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.57-64
    • /
    • 2016
  • Power demand has continuously increased with technological and economical development. The load density is also growing in the center of downtown area. In particular, underground facilities have been increased on the purpose of the prevention of urban disasters and pedestrian environment improvement. Based on this situation, the underground space in urban surroundings has gradually decreased because of the limited space. The ampacity of buried cables is affected by various factors such as cable size, soil thermal resistance, burial depth and filling material. The thermal capacity of the facilities is determined by the absorb heat surrounding the cable and the soil. The maximum operating temperature of cable is the highest temperature when the insulator of cable is not damaged in the case of high enough temperature. In this paper, the most effective cabling configuration is suggested using the duct array adjustment. It was also considered to increase the number of cable line. This underground distribution system was simulated by using ETAP(Electrical Transient Analysis Program).

A Study on the Calculation of Transmission Current-Carrying Capacity by Horizontal Arrangement Type in the Installation Methods of 154kV XLPE 600㎟ Power Cable Buried Ducts in Ground (154kV XLPE 600㎟ 지중관로 수평배열 형태별 허용전류용량 산정에 관한 연구)

  • Kim, Se-Dong;Yoo, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.53-58
    • /
    • 2016
  • The underground transmission lines which have been built to expand the suppling facilities will be continuously accompanying with high growth of the increase of power demand in the metropolitan area in recent years. So, it is necessary to maximize the ability and reliability of power supply with the current-carrying capability of the underground transmission lines. Design criteria of KEPCO is to be presented and used frequently. But it has to be studied about the installation methods of power cable buried in ground. In this study, we used the program for calculating the current-carrying capability of underground transmission power cables. We estimated the maximum permissible current values by the horizontal arrangement in the installation methods of power cable(154kV XLPE $600mm^2$) buried ducts in ground. To see the general tendency of the analysis, we researched a statistical analysis with such parameters as the maximum permissible current values. Through the regression analysis, we analyze the most highly values of the maximum permissible current on the Ra type duct arrangement.

Stability analysis of steel cable-stayed bridges

  • Tang, Chia-Chih;Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.11 no.1
    • /
    • pp.35-48
    • /
    • 2001
  • The objective of this study is to investigate the stability behavior of steel cable-stayed bridges by comparing the buckling loads obtained by means of finite element methods with eigen-solver. In recent days, cable-stayed bridges dramatically attract engineers' attention due to their structural characteristics and aesthetics. They require a number of design parameters and present a high degree of static indetermination, especially for long span bridges. Cable-stayed bridges exhibit several nonlinear behaviors concurrently under normal design loads due to the individual nonlinearity of substructures such as the pylons, stay cables, and bridge deck, and their interactions. The geometric nonlinearities arise mainly from large displacements of cables. Strong axial and lateral forces acting on the bridge deck and pylons cause structural nonlinear behaviors. The interaction is among the substructures. In this paper, a typical three-span steel cable-stayed bridge with a variety of design parameters has been investigated. The numerical results indicate that the design parameters such as the ratio of $L_1/L$ and $I_p/I_b$ are important for the structural behavior, where $L_1$ is the main span length, L is the total span length of the bridge, $I_p$ is the moment of inertia of the pylon, and $I_b$ is the moment of inertia of the bridge deck. When the ratio $I_p/I_b$ increases, the critical load decreases due to the lack of interaction among substructures. Cable arrangements and the height of pylon are another important factors for this type of bridge in buckling analysis. According to numerical results, the bridges supported by a pylon with harp-type cable arrangement have higher critical loads than the bridges supported by a pylon with fan-type cable arrangement. On contrary, the shape of the pylon does not significantly affect the critical load of this type of bridge. All numerical results have been non-dimensionalized and presented in both tabular and graphical forms.

Effect of Geometric Shapes on Stability of Steel Cable-stayed Bridges (기하형상에 따른 강사장교의 안정성에 관한 연구)

  • Kim, Seung-Jun;Han, Seung-Ryong;Kim, Jong-Min;Cho, Sun-Kyu;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.13-27
    • /
    • 2011
  • This paper presents an investigation of the structural stability of cable-stayed bridges, using geometric nonlinear finite-element analysis and considering various geometric nonlinearities, such as the sag effect of the cables, the beam-column effect of the girder and mast, and the large displacement effect. In this analytic research, a nonlinear frame element and a nonlinear equivalent truss element were used to model the girder, mast, and cable member. The live-load cases that were considered in this research were assumed based on the traffic loads. To perform reasonable analytic research, initial shape analyses in the dead-load case were performed before live-load analysis. In this study, the geometric nonlinear responses of the cable-stayed bridges with different cable arrangement types were compared. After that, parametric studies on the characteristics of the structural stability in critical live-load cases were performed considering various geometric parameters, such as the cable arrangement type, the stiffness ratios of the girder and mast, the area of the cables, and the number of cables. Through this parametric study, the effect of geometric shapes on the structural stability of cable-stayed bridges was investigated.

Development of Restraining-unit of Sheath Circulating Current and Its Electrical Characteristics (시스 순환전류 저감장치의 개발 및 전기적 특성 검토)

  • Ha C. W.;Kim J. N.;Kim D. W.;Kang J. W.;Kim J. S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.394-396
    • /
    • 2004
  • In order to reduce the sheath circulating current, same arrangement and balanced length of cable are required for the underground cable system. But practically, changing the whole arrange of cable which is already constructed is impossible. Therefore, It is necessary to apply the restraining-unit of sheath circulating current at the cross-bonding wire of insulated joint because the impedance of restraining-unit is able to reduce sheath circulating current at a normal condition. Even at a transient state, the restraining-unit must maintain electrical and mechanical characteristics. In this paper, the features of restraining-unit developed by LG Cable as well as the electrical test results are described. It proves that the restraining-unit is applicable to the underground cable system where sheath circulating current rises.

  • PDF