• Title/Summary/Keyword: Ca-release channel

Search Result 141, Processing Time 0.024 seconds

EFFECTS OF Porphyromonas endodontalis LIPOPOLYSACCHARIDE ON MEMBRANE PERMEABILITY OF FIBROBLAST (Porphyromonas endodontalis의 Lipopolysaccharide가 섬유아세포의 세포막 투과성에 미치는 영향)

  • Kim, Jae-Hee;Kim, Min-Kyum;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.437-446
    • /
    • 1999
  • Porphyromonas endodontalis(P. endodontalis) is one of the important causative bacteria of pulpal and periapical disease. P. endodontalis has lipopolysaccharide(LPS) and it plays a major role in stimulating the synthesis and release of cytokines from immune cells and prostaglandin $E_2$ from host cells. The purpose of this study is to prepare LPS from P. endodontalis and to evaluate the effect of LPS on membrane permeability of fibroblast. P. endodontalis ATCC 35406 was cultured in anaerobic condition, and LPS was extracted. LPS was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Human periodontal ligament cell, colon fibroblast(CCD-18Co, KCLB 21459) and skin fibroblast(Detroit 551, KCLB 10110) were perfused with 0.01% P. endodontalis LPS solution, high concentration of $K^+$ solution and $Ca^{2+}$-free solution, $Ca^{2+}$ concentration ratio was measured by microfluorometry. 1. Intracellular $Ca^{2+}$ concentration was not changed in human periodontal fibroblast and skin fibroblast(Detroit 551) stimulated by P. endodontalis LPS. 2. Intracellular $Ca^{2+}$ concentration was increased in colon fibroblast(CCD-18Co) stimulated by P. endodontalis LPS. 3. Colon fibroblast(CCD-18Co) has voltage dependent $Ca^{2+}$ channel activated by high concentration of $K^+$ solution. 4. P. endodontalis LPS has no effect on the increase of intracellular $Ca^{2+}$ concentration during perfusion of $Ca^{2+}$-free solution.

  • PDF

Influence of Quinidine on Catecholamine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization from the Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Jeon, Yong-Joon;Yang, Won-Ho;Lim, Geon-Han;Kim, Il-Hwan;Lee, Seung-Myeong;Hong, Soon-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2000
  • The present study was designed to investigate the effect f quinidine on catecholamine (CA) secretion evoked by ACh, high $K^{+}$, DMPP, McN-A343, cyclopiazonic acid and Bay-K-8644 from the isolated perfused rat adrenal gland and to establish the mechanism of its action. The perfusion of quinidine (15-150 $\mu$M) into an adrenal vein for 60 min produced relatively dose- and time-dependent inhibition in CA secretion evoked by ACh (5.32$\times$10$^{-3}$ M), high $K^{+}$ (5.6$\times$10$^{-2}$ M), DMPP (10$^{-4}$ M for 2 min), McN-A-343 (10$^{-4}$ M for 2 min), cyclopiazonic acid (10$^{-5}$ M for 4 min) and Bay-K-8644 (10$^{-5}$ M for 4 min). Furthermore, in adrenal glands pre-loaded with quinine (5$\times$10$^{-5}$ M), CA secretory responses evoked by veratridine (10$^{-4}$ M) was time-dependently inhibited. Also, in the presence of lidocaine (10$^{-4}$ M), which is also known to be a sodium channel blocker, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclo-piazonic acid were also greatly reduced in similar fashion to that of quinidine-treatment. Taken together, these results suggest that quinidine causes greatly the inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. Furthermore, these findings indicate strongly that this inhibitory action of quinidine appears to be associated to the blocking action of sodium channels at least in CA secretion from the rat adrenal gland.and.

  • PDF

Induction of Adenosine Release by 6-Paradol, a Long Lasting Analgesic, in Rat Spinal Cord (흰쥐 척수에서 지속성 진통물질 6-파라돌에 의한 아데노신의 유리 증가)

  • Yoo, Eun-Sook;Kim, Ok-Hee;Lee, Sang-Sup
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.499-504
    • /
    • 2000
  • We previously demonstrated that 6-paradol, a compound structurally related to capsaicin, showed to produce prolonged analgesia in experimental animals. The effects of 6-paradol on the release of adenosine were investigated in the rat spinal cord synaptosomes by high performance liquid chromatography. In the presence of $Ca^{++}$, adenosine was released from synaptosomes of rat spinal cord by 6-paradol and capsaicin in a dose dependent manner. Nifedifine, L-type voltage sensitive calcium channel blocker, was found to be ineffective in releasing adenosine by $10\;{\mu}M$ 6-paradol. After exposure to $10\;{\mu}M$ capsazepine, a novel capsaicin selective antagonist, the level of adenosine evoked by $10\;{\mu}M$ 6-paradol was decreased by 75%, and that evoked by $10\;{\mu}M$ capsaicin was blocked completely. These results suggest that the analgesic effect of 6-paradol might be mediated by the vanilloid (capsaicin) sensitive pathway, or the direct binding to the vanilloid receptor.

  • PDF

Octyl Gallate Inhibits ATP-induced Intracellular Calcium Increase in PC12 Cells by Inhibiting Multiple Pathways

  • Guo, Yujie;Hong, Yi-Jae;Jang, Hyun-Jong;Kim, Myung-Jun;Rhie, Duck-Joo;Jo, Yang-Hyeok;Hahn, Sang-June;Yoon, Shin-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • Phenolic compounds affect intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) signaling. The study examined whether the simple phenolic compound octyl gallate affects ATP-induced $Ca^{2+}$ signaling in PC12 cells using fura-2-based digital $Ca^{2+}$ imaging and whole-cell patch clamping. Treatment with ATP ($100\;{\mu}M$) for 90 s induced increases in $[Ca^{2+}]_i$ in PC12 cells. Pretreatment with octyl gallate (100 nM to $20\;{\mu}M$) for 10 min inhibited the ATP-induced $[Ca^{2+}]_i$ response in a concentration-dependent manner ($IC_{50}=2.84\;{\mu}M$). Treatment with octyl gallate ($3\;{\mu}M$) for 10 min significantly inhibited the ATP-induced response following the removal of extracellular $Ca^{2+}$ with nominally $Ca^{2+}$-free HEPES HBSS or depletion of intracellular $Ca^{2+}$ stores with thapsigargin ($1\;{\mu}M$). Treatment for 10 min with the L-type $Ca^{2+}$ channel antagonist nimodipine ($1\;{\mu}M$) significantly inhibited the ATP-induced $[Ca^{2+}]_i$ increase, and treatment with octyl gallate further inhibited the ATP-induced response. Treatment with octyl gallate significantly inhibited the $[Ca^{2+}]_i$ increase induced by 50 mM KCI. Pretreatment with protein kinase C inhibitors staurosporin (100 nM) and GF109203X (300 nM), or the tyrosine kinase inhibitor genistein ($50\;{\mu}M$) did not significantly affect the inhibitory effects of octyl gallate on the ATP-induced response. Treatment with octyl gallate markedly inhibited the ATP-induced currents. Therefore, we conclude that octyl gallate inhibits ATP-induced $[Ca^{2+}]_i$ increase in PC12 cells by inhibiting both non-selective P2X receptor-mediated influx of $Ca^{2+}$ from extracellular space and P2Y receptor-induced release of $Ca^{2+}$ from intracellular stores in protein kinase-independent manner. In addition, octyl gallate inhibits the ATP-induced $Ca^{2+}$ responses by inhibiting the secondary activation of voltage-gated $Ca^{2+}$ channels.

[${^3H}Ryanodine$ Binding Sites of SR Vesicles of the Chicken Pectoral Muscle

  • Yun, Hyo-Yung;Jeon, Jong-Rye;Hong, Jang-Hee;Hur, Gang-Min;Lee, Jae-Heun;Seok, Jeong-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.377-384
    • /
    • 1997
  • To investigate the properties of ryanodine binding sites of the bird skeletal SR vesicles, SDS PAGE, purification of RyR, and $[^3H]ryanodine$ binding study were carried out in the SR vesicles prepared from the chicken pectoral muscle. The chicken SR vesicles have two high molecular weight (HMW) protein bands as in eel SR vesicles on SDS PAGE. The HMW bands on SDS PAGE were found in the $[^3H]ryanodine$ peak fraction $(Fr_{3-5})$ obtained from the purification step of the ryanodine receptor protein. Bmax and KD of the chicken $[^3H]ryanodine$ binding sites were 12.52 pmol/mg protein and 14.53 nM, respectively. Specific $[^3H]ryanodine$ binding was almost maximal at $50{\sim}100$ ${\mu}M$ $Ca^{2+}$, but was not increased by 5 mM AMP and not inhibited by high $Ca^{2+}$. Binding was significantly inhibited by $20{\sim}100$ ${\mu}M$ ruthenium red and 1 mM tetracaine, but slightly inhibited by $Mg^{2+}$. From the above results, it is suggested that chicken SR vesicles have the ryanodine binding sites to which the binding of ryanodine is almost maximal at $50{\sim}10$ ${\mu}M$ $Ca^{2+}$, is significantly inhibited by ruthenium red and tetracaine, slightly inhibited by $Mg^{2+}$, but not affected by AMP and not inhibited by high $Ca^{2+}$.

  • PDF

The Role of Adenosine Receptor on Acetylcholine Release from Ischemic-Induced Rat Hippocampus (허혈이 유발된 흰쥐 해마에서 Acetylcholine 유리에 미치는 Adenosine 수용체의 역할)

  • Choi, Bong-Kyu;Kim, Do-Kyung;Kang, Hun;Jeon, Jae-Min;Kang, Yeon-Wook
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The effects of adenosine analogues on the electrically-evoked acetylcholine(ACh) release and the influence of ischemia on the effects were studied in the rat hippocampus. Slices from the rat hippocampus were equilibrated with $0.1{\mu}M$ $[^3H]-choline$ and the release of the labelled product, $[^3H]-ACh$, was evoked by electrical stimulation(3 Hz, 2 ms, 5 $VCm^{-1}$ and rectangular pulses for 2 min), and the influence of various agents on the evoked tritiumoutflow was investigated. Ischemia(10 min with 95% $N_2$ + 5% $CO_2$) increased both the basal and evoked ACh release. These increases were abolished by glucose addition into the superfused medium, and they significantly inhibited either by 0.1 & $0.3{\mu}M$ TTX pretreatment or by removing $Ca^{++}$ in the medium. MK-801($1{\sim}10{\mu}M$), a specific NMDA receptor antagonist, and glibenclamide $(1{\mu}M)$, a $K^+-channel$ inhibitor, did not alter the evoked ACh release and nor did they affect the ischemia-induced increases In ACh release. However, polymyxin B(0.03 mg), a specific protein kinase C inhibitor, significantly inhibited the effects of ischemia on the evoked ACh release. Adenosine and $N^6-cyclopentyladenosine$ decreased the ACh release in a dose dependent manner in ischemic condition, though the magnitude of inhibition was far less than those in normal(normoxic) condition. However, the treatment with $5{\mu}M$ DPCPX, a potent $A_1-adenosine$ receptor antagonist, potentiated the ischemia-effect. These results indicate that the evoked-ACh release is potentiated by ischemia, and this process being most probably mediated by protein kinase C, and that the decreased effect of ACh release mediated by $A_1-adenosine$ receptor is significantly inhibited in ischemic state.

  • PDF

Role of Gap Junctions in the Endothelium-Dependent Hyperpolarization of Vascular Smooth Muscle Cells

  • Yamamoto, Yoshimichi;Klemm, Megan F.;Hashitani, Hikaru;Lang, Richard J.;Soji, Tsuyoshi;Suzuki, Hikaru
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Hyperpolarization of arterial smooth muscle by acetylcholine is considered to be produced by the release of an unidentified chemical substance, an endothelium-derived hyperpolarizing factor (EDHF). Several chemicals have been proposed as the candidate for EDHF. However, none of them fulfil completely the nature and property of EDHF. Ultrastructural observation with electron microscope reveals that in some arteries, gap junctions are formed between endothelial and smooth muscle cells. In small arterioles, injection of gap junction permeable dyes into an endothelial cell results in a distribution of the dye to surrounding cells including smooth muscle cells. These observations allow the speculation that myoendothelial gap junctions may have a functional significance. Simultaneous measurement of the electrical responses in both endothelial and smooth muscle cells using the double patch clamp method demonstrates that these two cell types are indeed electrically coupled, indicating that they behave as a functional syncytium. The EDHF-induced hyperpolarization is produced by an activation of $Ca^{2+}-sensitive\;K^+-channels$ that are inhibited by charybdotoxin and apamin. Agonists that release EDHF increase $[Ca^{2+}]_i$ in endothelial cells but not in smooth muscle cells. Inhibition of gap junctions with chemical agents abolishes the agonist-induced hyperpolarization in smooth muscle cells but not in endothelial cells. All these observations can be explained if EDHF is an electrotonic signal propagating from endothelium to smooth muscle cells through gap junctions.

  • PDF

Inhibitory Effect of Fangchinoline on Excitatory Amino Acids. Induced Neurotoxicity in Cultured Rat Cerebellar Granule Cells

  • Kim, Su-Don;Oh, Sei-Kwan;Kim, Hack-Seang;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2001
  • Glutamate receptors-mediated excitoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fanschinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a $Ca^{2+}$channel blockers on excitatory amino acids (EAAS)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5$\mu\textrm{m}$) inhibited glutamate (1 ${m}M$), N-methyl-D-aspartate (NMDA; 1 ${m}M$) and kainate (100$\mu\textrm{m}$)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5$\mu\textrm{m}$) inhibited glutamate release into medium induced by NMDA (1 ${m}M$) and kainate (100$\mu\textrm{m}$), which was measured by HPLC. And fangchinoline (5$\mu\textrm{m}$) inhibited glutamate (1 ${m}M$)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of $Ca^{2+}$influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions.

  • PDF

Effects of Fluoxetine on ATP-induced Calcium Signaling in PC12 Cells

  • Lee, Yeo-Min;Kim, Hee-Jung;Hong, Sun-Hwa;Kim, Myung-Jun;Min, Do-Sik;Rhie, Duck-Joo;Kim, Myung-Suk;Jo, Yang-Hyeok;Hahn, Sang-June;Yoon, Shin-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • Fluoxetine, a widely used anti-depressant compound, has several additional effects, including blockade of voltage-gated ion channels. We examined whether fluoxetine affects ATP-induced calcium signaling in PC12 cells by using fura-2-based digital calcium imaging and assay for $[^3H]-inositol$ phosphates (IPs). Treatment with ATP $(100\;{\mu}M)$ for 2 min induced $[Ca^{2+}]_i$ increases. The ATP-induced $[Ca^{2+}]_i$ increases were significantly decreased by removal of extracellular $Ca^{2+}$ and treatment with the inhibitor of endoplasmic reticulum $Ca^{2+}$ ATPase thapsigargin $(1\;{\mu}M)$. Treatment with fluoxetine for 5 min blocked the ATP-induced $[Ca^{2+}]_i$ increase concentration-dependently. Treatment with fluoxetine $(30\;{\mu}M)$ for 5 min blocked the ATP-induced $[Ca^{2+}]_i$ increase following removal of extracellular $Ca^{2+}$ and depletion of intracellular $Ca^{2+}$ stores. While treatment with the L-type $Ca^{2+}$ channel antagonist nimodipine for 10 min inhibited the ATP-induced $[Ca^{2+}]_i$ increases significantly, treatment with fluoxetine alone blocked the ATP-induced responses. Treatment with fluoxetine also inhibited the 50 mM $K^+-induced$ $[Ca^{2+}]_i$ increases completely. However, treatment with fluoxetine did not inhibit the ATP-induced $[^3H]-IPs$ formation. Collectively, we conclude that fluoxetine inhibits ATP-indueed $[Ca^{2+}]_i$ increases in PC12 cells by inhibiting both an influx of extracellular $Ca^{2+}$ and a release of $Ca^{2+}$ from intracellular stores without affecting IPs formation.

Effects of Recombinant Imperatoxin A $(IpTx_a$ mutants on $Ca^{2+}$ Release Channel/Ryanodine Receptor in Rabbit Skeletal Sarcoplasmic Reticulum

  • Seo, In-Ra;Park, Murim;Kim, Do-Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.55-55
    • /
    • 1999
  • Imperatoxin A (IpTx$_{a}$), a 3.7 kDa peptide from the African scorpion Pandinus imperator, has been known as an agonist of skeletal ryanodine receptor (RyR). In order to study the structure and function of the toxins on RyR, the IpTx$_{a}$ cDNA was PCR-amplified using 3 pairs of primers and the toxin was expressed in E. coli expression system.(omitted)ted)

  • PDF