• Title/Summary/Keyword: Ca-protein binding

Search Result 245, Processing Time 0.022 seconds

Thyroid Hormone-Induced Alterations of $Ca^{2+}-ATPase$ and Phospholamban Protein Expression in Cardiac Sarcoplasmic Reticulum

  • Kim, Hae-Won;Noh, Kyung-Min;Park, Mi-Young;Lee, Hee-Ran;Lee, Eun-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.223-230
    • /
    • 1999
  • Alterations of cardiovascular function associated with various thyroid states have been studied. In hyperthyroidism left ventricular contractility and relaxation velocity were increased, whereas these parameters were decreased in hypothyroidism. The mechanisms for these changes have been suggested to include alterations in the expression and/or activity levels of various proteins; ${\alpha}-myosin$ heavy chain, ${\beta}-myosin$ heavy chain, ${\beta}-receptors,$ the guanine nucleotide-binding regulatory protein, and the sarcolemmal $Ca^{2+}-ATPase.$ All these cellular alterations may be associated with changes in the intracellular $Ca^{2+}$ concentration. The most important regulator of intracellular $Ca^{2+}$ concentration is the sarcoplasmic reticulum (SR), which serves as a $Ca^{2+}$ sink during relaxation and as a $Ca^{2+}$ source during contraction. The $Ca^{2+}-ATPase$ and phospholamban are the most important proteins in the SR membrane for muscle relaxation. The dephosphorylated phospholamban inhibits the SR $Ca^{2+}-ATPase$ through a direct interaction, and phosphorylation of phospholamban relieves the inhibition. In the present study, quantitative changes of $Ca^{2+}-ATPase$ and phospholamban expression and the functional consequences of these changes in various thyroid states were investigated. The effects of thyroid hormones on (1) SR $Ca^{2+}$ uptake, (2) phosphorylation levels of phospholamban, (3) SR $Ca^{2+}-ATPase$ and phospholamban protein levels, (4) phospholamban mRNA levels were examined. Our findings indicate that hyperthyroidism is associated with increases in $Ca^{2+}-ATPase$ and decreases in phospholamban levels whereas opposite changes in these proteins occur in hypothyroidism.

  • PDF

THE AFFINITY OF CALMODULIN-AFFIGEL FOR INOSITOL TRIPHOSPHATE KINASE FROM BOVINE BRAIN (소의 뇌 Inositol triphosphate kinase와 Calmodulin-Affigel과의 친화도)

  • Lim, Sung-Woo;Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1990
  • The one event on signalling mechanism is the cleavage by adenyl cyclase of ATP into second messenger, cyclic AMP. The other transfer system of inositol metabolism. it is widely recognized that hydrolysis of the minor membrane lipid phosphoinositide bisphosphate($PIP_2$) initiated by occupation of certain receptors and catalyzed by phospholipase C, lead to toe generation of the two intracellular messengers, inositol triphosphate($IP_3$) and diacylglycerol(DG). $IP_3$ is converted to inositol tetrakisphosphate($IP_4$) by $IP_3$ kinase. In the present study, it is that purification of calmodulin is used by phenyl-Sepharose CL-4B chromatography. it's molecular weigh, 17.000 in SDS-polyacrylamide gel electrophoresis. In order to observe the affinity between calmodulin (CaM)-Affigel 15 and $IP_3$ kinase, and isolated $IP_3$ kinase, was applied in CaM-Affigel with $Ca^{2+}$ equilibirum buffer and EGTA equilibirum buffer. We compared with binding and elution effect of $IP_3$ kinase in several condition of buffer. In affinity of binding. $Ca^{2+}$ equilibrium buffer was in the most proper condition. and elution, CaM/$Ca^{2+}$ buffer(CE1 10.36, CE2 12. 76pM/min/mg of protein) was effected much more than EGTA buffer(E2 1.48, E3 2.43pM/min/mg of protein), but CaM/$Ca^{2+}$ stimulate the activity of $IP_3$ kinase. And then, several detergents such as sodium deoxycholate, tween 20. cholic acid, polyethylene glycol, chaps were applied. The 0.2% chaps buffer(E2 23.19, E3 8.05pM/min/mg of protein) was the most effective in elution of $IP_3$ kinase.

  • PDF

Effect of Electrolytes on the Saturable Binding of Morphine in Rat Brain Tissue (백서(白鼠) 뇌조직(腦組織)에서 Morphine의 Saturable Binding에 미치는 전해질(電解質)의 영향(影響))

  • Ko, Bok-Hyun;Chae, Soo-Wan;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.33-44
    • /
    • 1982
  • The binding in vitro of an opiate agonist, $(^3H)-morphine$, was studied using rat brain slices which were incubated in the modified Krebs-Henseleit bicarbonate buffer solution containing various concentrations of electrolytes with or without morphine, naloxone or morphine+naloxone at $4^{\circ}C$ for 24 hours. The binding of $(^3H)-morphine$ may be seperated into two component; one a saturable binding and the other nonsaturable. The saturable binding may be calculated from the differences in binding observed in the absence and presence of high concentration of morphine. The maximal saturable binding and $K_D$ value in the naive preparations were $0.32{\pm}0.02\;pmole/mg$ protein and $0.75{\pm}0.07\;nM$ respectively. The saturable binding of $(^3H)-morphine$ was significantly increased by low temperature-treatment, while $K_D$ value was not changed. Morphine in the incubation media significantly increased the saturable binding of $(^3H)-morphine$ and $K_D$ value. Naloxone also increased the maximal saturable binding of $(^3H)-morphine$ and $K_D$ value of the drug. Decrease of $K^+\;and\;Mg^{++}$, and addition of $Mn^{++}$ in the incubation media significantly increased the saturable binding of $(^3H)-morphine$, but decrease of $Na^+$and increase of $Ca^{++}$ in the incubation media did not influence the binding. The increment of the saturable binding of $(^3H)-morphine$ by nonlabeled morphine in the incubation media was notaffected by decrease of $Na^+,\;K^+\;or\;Mg^{++}$, or addition of $Mn^{++}$ into the incubation media, but was inhibited by increase of $Ca^{++}$ in the incubation media, while the increment of the saturable binding of $(^3H)-morphine$ was net observed by decrease of $Na^+,\;K^+\;or\;Mg^{++}$, or increase of $Ca^{++}$ in the incubation media. The above results indicate that change of opiate binding sites in quality, i.e. affinity, and quantity, i.e. number of binding sites, may occur by low temperature-treatment in the absence and presence of morphine or naloxone and that electrolytes play role of the changes of opiate binding sites.

  • PDF

Calumenin Interacts with SERCA2 in Rat Cardiac Sarcoplasmic Reticulum

  • Sahoo, Sanjaya Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.265-269
    • /
    • 2008
  • Calumenin, a multiple EF-hand $Ca^{2+}$ binding protein is located in the SR of mammalian heart, but the functional role of the protein in the heart is unknown. In the present study, an adenovirus gene transfer system was employed for neonatal rat heart to examine the effects of calumenin over-expression (Calu-OE) on $Ca^{2+}$ transients. Calu-OE (8 folds) did not alter the expression levels of DHPR, RyR2, NCX, SERCA2, CSQ and PLN. However, Calu-OE affected several parameters of $Ca^{2+}$ transients. Among them, prolongation of time to 50% baseline ($T_{50}$) was the most outstanding change in electrically-evoked $Ca^{2+}$ transients. The higher $T_{50}$ was due to an inhibition of SERCA2-mediated $Ca^{2+}$ uptake into SR, as tested by oxalate-supported $Ca^{2+}$ uptake. Furthermore, co-IP study showed a direct interaction between calumenin and SERCA2. Taken together, calumenin in the cardiac SR may play an important role in the regulation of $Ca^{2+}$ uptake during the EC coupling process.

Isolation and Characterization of Calmodulin Gene from Panax ginseng C. A. Meyer

  • Wasnik, Neha G.;Kim, Yu-Jin;Kim, Se-Hwa;Sathymoorthy, S.;Pulla, Rama Krishna;Parvin, Shohana;Senthil, Kalaiselvi;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.59-64
    • /
    • 2009
  • $Ca^{2+}$ and calmodulin (CaM), a key $Ca^{2+}$ sensor in all eukaryotes, have been implicated for defense responses of plants. Eukaryotic CaM contains four structurally and functionally similar $Ca^{2+}$ domains named I, II, III and IV. Each $Ca^{2+}$ binding loop consists of 12 amino acid residues with ligands arranged spatially to satisfy the octahedral symmetry of $Ca^{2+}$ binding. To investigate the altered gene expression and the role of CaM in ginseng plant defense system, cDNA clone containing a CaM gene, designated PgCaM was isolated and sequenced from Panax ginseng. PgCaM, which has open reading frame of 450 nucleotides predicted to encode a precursor protein of 150 amino acid residues. Its sequence shows high homologies with a number of other CaMs, with more similarity to CaM of Daucus carota (AAQ63461). The expression of PgCaM in different P. ginseng organs was analyzed using real time PCR. The results showed that PgCaM expressed at different levels in young leaves, shoots, and roots of 3-week-old P. ginseng. In addition, the expressions of PgCaM under different abiotic stresses were analyzed at different time intervals.

PRIP, a Novel Ins(1,4,5)P3 Binding Protein, Functional Significance in Ca2+ Signaling and Extension to Neuroscience and Beyond

  • Kanematsu, Takashi;Takeuchi, Hiroshi;Terunuma, Miho;Hirata, Masato
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.305-314
    • /
    • 2005
  • Investigation of chemically synthesized inositol 1,4,5-trisphosphate [$Ins(1,4,5)P_3$] analogs has led to the isolation of a novel binding protein with a molecular size of 130 kDa, characterized as a molecule with similar domain organization to phospholipase C-${\delta}1$ (PLC-${\delta}1$) but lacking the enzymatic activity. An isoform of the molecule was subsequently identified, and these molecules have been named PRIP (PLC-related, but catalytically inactive protein), with the two isoforms named PRIP-1 and -2. Regarding its ability to bind $Ins(1,4,5)P_3$ via the pleckstrin homology domain, the involvement of PRIP-1 in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling was examined using COS-1 cells overexpressing PRIP-1 and cultured neurons prepared from PRIP-1 knock-out mice. Yeast two hybrid screening of a brain cDNA library using a unique N-terminus as bait identified GABARAP ($GABA_A$ receptor associated protein) and PP1 (protein phosphatase 1), which led us to examine the possible involvement of PRIP in $GABA_A$ receptor signaling. For this purpose PRIP knock-out mice were analyzed for $GABA_A$ receptor function in relation to the action of benzodiazepines from the electrophysiological and behavioral aspects. During the course of these experiments we found that PRIP also binds to the b-subunit of $GABA_A$ receptors and PP2A (protein phosphtase 2A). Here, we summarize how PRIP is involved in $Ins(1,4,5)P_3$-mediated $Ca^{2+}$ signaling and $GABA_A$ receptor signaling based on the characteristics of binding molecules.

$Ca^{2+}$ CALMODULIN CAUSES RAB3A TO DISSOCIATE FROM SYNAPTOSOMAL MEMBRANES

  • Park, Jae-Bong;Christoper C. Farnsworth;John A. Glomset
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.38-38
    • /
    • 1996
  • Rab3A is a synaptic vesicle-associated, GTP-binding protein that has been implicated in the regulation of neurotransmission. We show here that Ca2+/calmodulin can form a 1:1 complex with Rab3A and cause it to dissociate from synaptosomal membranes. Formation of the complex requires both the lipidated C-terminus of Rab3A and the presence of guanine nucleotide. (omitted)

  • PDF

Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells

  • Kim, Hak Jun;Shim, Hye Eun;Lee, Jun Hyuck;Kang, Yong-Cheol;Hur, Young Baek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1989-1996
    • /
    • 2015
  • Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1℃/min in a -80℃ freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

Manufacturing of Calcium Binding Peptide using Sericin Hydrolysate and Its Bioavailability in Calcium Deficient Rat (실크 세리신 단백질 가수분해물을 이용한 유기 칼슘제의 제조 및 칼슘 결핍 쥐에서의 생체 이용률)

  • Cho, Hye-Jin;Lee, Hyun-Sun;Jung, Eun-Young;Suh, Hyung-Joo
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.5
    • /
    • pp.680-686
    • /
    • 2010
  • Silk sericin protein was hydrolyzed by seven proteolytic enzymes in order to examine the effectiveness of the hydrolysates in binding calcium. The amino acid nitrogen content of hydrolysates from Flavourzyme was higher than that for other enzymes, and its calcium binding capacity showed a dose-dependent increase. We examined the effects of calcium binding peptide from sericin hydolysates on the bioavailability of Ca-deficient rats. Three-week-old male rats were fed an Ca-deficient diet for three weeks. Rats were divided into four groups (DD: non-treated group on calcium deficient diet; DD+MC: milk-calcium treated group; DD+OC: organic calcium made using sericin hydolysates; and DD+IC: inorganic calcium ($CaCl_2$). After oral administration of calcium supplements for one week, the calcium content of the serum and liver were significantly higher in DD+OC ($101.7{\mu}g$/mL and $49.3{\mu}g$/mL) and DD+MC ($83.6{\mu}g$/mL and $42.8{\mu}g$/mL) than DD ($86.3{\mu}g$/mL and $43.4{\mu}g$/mL). The alkaline phosphatase (ALP) content in the treated groups was significantly lower than DD, but no significant difference among groups was shown. Aspartate aminotransferase (AST) levels did not show any significant difference between groups. Alanine aminotransferase (ALT) levels were significantly reduced compared to the DD group. In conclusion, binding calcium to peptides from sericin hydrolysates seems to improve its bioavailability, and to hasten the cure of calcium deficiency in experimental rats.

$Ca^{2+}$ is Required to Make Functional Malate Synthase in Corynebacterium glutamicum

  • Kim, Hyung-Joon;Kim, Jae-Ho;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.435-437
    • /
    • 1997
  • The role of $Ca^{2+}$ in making functional malate synthase in Corynebacterium glutamicum was investigated using the cloned DNA coding for the enzyme. Introduction of cloned aceB into C. glutamicum overexpressed malate synthase as judged by SDS-PAGE. However, the increase in enzyme activity of the expressed malate synthase did not match the level of overexpression observed in SDS-PAGE. Addition of $Ca^{2+}$ to the growth medium specifically increased the activity. The malate synthase could be stained with ruthenium red in a $Ca^{2+}$-specific manner. This agrees with the previous observation which reported a potential $Ca^{2+}$-binding domain in the N-terminal region of the protein.

  • PDF