• Title/Summary/Keyword: Ca-alginate bead

Search Result 52, Processing Time 0.022 seconds

Lead Biosorption by Alginate Beads Immobilizing Aspergillus niger (Aspergillus niger를 고정화한 Alginate Bead에 의한 납 흡착)

  • Bang, Byung-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Alginate, a well-known biopolymer, is universally applied for immobilization of microbial cells. Biosorption characteristics of lead by waste biomass of immobilized A. niger beads, used in fermentation industries to produce citric acid, were studied. The immobilized A. niger beads, prepared via capillary extrusion method using calcium chloride, were applied in the removal of lead. Pb uptake was the highest in A. niger beads cells grown for 3 days with medium producing citric acid (12% sucrose, 0.5% $NH_4NO_3$, 0.1% $KH_2PO_4$, and 0.025% $MgSO_4$). Lead uptake by the immobilized A. niger beads and free A. niger mycellia beads increased sharply with time. However, while uptake by the immobilized A. niger beads continued to increase slowly, that by free A. niger mycellia beads stopped after 30 min. The optimum pH and temperature of lead uptake were found to be 6 and $35^{\circ}C$, respectively. The maximum uptake of lead was achieved with $50{\sim}100$ beads and 50 ml lead solution in a 250-ml Erlenmeyer flask, while, at over 100 beads, uptake of the lead decreased. The order of biosorption capacity for heavy metals was Pb>Cu>Cd. Pb uptake capacity of the immobilized A. niger beads treated with 0.1 M $CaCI_2$, 0.1 M NaOH, and 0.1 M KOH decreased compared to the untreated beads. On testing the desorption of Pb from the immobilized A. niger beads, re-uptake of Pb was found possible after desorption of the binding metal with 0.1 M HCI.

  • PDF

Enhancement of Cultivation Efficiency of Bifidobacterium longum Using Calcium Carbonate Buffer System (Calcium Carbonate Buffer System을 이용한 Bifidobacterium longum의 배양 효율 증대에 관한 연구)

  • Lee, Ki-Yong;Hwang, In-Bum;Heo, Tae-Ryeon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.126-132
    • /
    • 1997
  • Calcium carbonate ($CaCO_3$) immobilized with alginate was studied as buffer system to enhance the cultivation efficiency of Bifidobacterium longum (ATCC 15707) which is inhibited at low pH. To test the bufferring effect of the immobilized $CaCO_3$ beads, pH value in each modified trypticase-proteose peptone-yeast (TPY) broth which is adjusted to pH 4.0 with acetic acid, lactic acid and complex solution of acetic and lactic acid, 3:2 (M:M) was tested by concentration of $CaCO_3$ bead and reaction time. The bufferring effect of $CaCO_3$ bead became higher with increasing the amount of $CaCO_3$ bead in the acidic solution. The growth rate of bifidobacteria and bufferring effect were examined in relation to the amount of $CaCO_3$ bead and concentration of glucose in the modified TPY media. The growth rate of bifidobacteria and bufferring effect were increased with increasing the amount of $CaCO_3$ bead and concentration of glucose. Also, the exponential time of bifidobacteria became longer with increasing the amount of $CaCO_3$ bead and concentration of glucose in the modified TPY media. When we observed the growth rate of bifidobacteria by the method of pH-controlled culture and $CaCO_3$ buffer system, the $CaCO_3$ buffer system was more effective than that of pH-controlled culture. Therefore, this $CaCO_3$ buffer system may be useful as a method to enhance of the cultivation efficiency of bifidobacteria.

  • PDF

Spherical and cylindrical microencapsulation of living cells using microfluidic devices

  • Hong, Joung-Sook;Shin, Su-Jung;Lee, Sang-Hoon;Wong, Edeline;Cooper-White, Justin
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.157-164
    • /
    • 2007
  • Microencapsulation of cells within microfluidic devices enables explicit control of the membrane thickness or cell density, resulting in improved viability of the transplanted cells within an aggressive immune system. In this study, living cells (3T3 and L929 fibroblast cells) are encapsulated within a semi-permeable membrane (calcium crosslinked alginate gel) in two different device designs, a flow focusing and a core-annular flow focusing geometry. These two device designs produce a bead and a long microfibre, respectively. For the alginate bead, an alginate aqueous solution incorporating cells flows through a flow focusing channel and an alginate droplet is formed from the balance of interfacial forces and viscous drag forces resulting from the continuous (oil) phase flowing past the alginate solution. It immediately reacts with an adjacent $CaCl_2$ drop that is extruded into the main flow channel by another flow focusing channel downstream of the site of alginate drop creation. Depending on the flow conditions, monodisperse microbeads of sizes ranging from $50-200\;{\mu}m$ can be produced. In the case of the microfibre, the alginate solution with cells is extruded into a continuous phase of $CaCl_2$ solution. The diameter of alginate fibres produced via this technique can be tightly controlled by changing both flow rates. Cell viability in both forms of alginate encapsulant was confirmed by a LIVE/DEAD cell assay for periods of up to 24 hours post encapsulation.

The Effect of Sodium Alginate Coating on the Storage Stability and Dissolution Rate of Enteric Coated Lansoprazole (알긴산 나트륨이 장용코팅된 란소프라졸 제제의 저장안정성 및 용출률에 미치는 영향에 관한 연구)

  • Kim, Jung-Hoon;Oh, Jung-Min;Khang, Gil-Son;Jeong, Je-Kyo;Lee, Jung-Sik;Jeung, Sang-Young;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2002
  • Lansoprazole, pharmaceutics for acid-related diseases, is unstable in low pH environments and generally coated with enteric polymer to obtain gastroresistance in stomach. Because its storage stability is influenced by acidic substitutes of enteric polymer, alkaline chemicals wεre generally addεd to dosage form as a stabilizer. In this experience, we coated lansoprazole bead with sodium alginate and evaluated the effect of bead size and sodium alginate coating on the storage stability and dissolution profile of lansoprazole. Sodium alginate solution containing lansoprazole was sprayed as a droplet into 3% (w/v) $CaCl_2$ solution and the resultant bead was coated with starch, sodium alginate, and hydroxypropyl methylcellulose phthalate. The content of lansoprazole granule not coated with sodium alginate decreased to 57.96% of initial content when stored at a severe condition for 4 weeks, but that of lansoprazole granule coated with sodium alginate before enteric coating decreased little and as the thickness of sodium alginate film increased, the content of bead didn't decreased for 4 weeks. Sodium alginate film also improved the gastroresistance without much influencing the maximum dissolution rate.

고정화 효소를 이용한 염소계 유기화합물의 분해

  • Ryu Du-Hyeon;Kim Hyeong-Su;Choi Yong-Uk;Kim Jin-Myeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.171-174
    • /
    • 2005
  • Suspected carcinogen, TCE and PCE, are the most common groundwater pollutants extensively used as a solvent and degreaser. In this study, oxygenases were immobilized in Ca-alginate and chitosan bead. TCE degradation by the immoblized enzyme beads were measured for various size, enzyme addition volume and TCE contact time. The degradation was decreased as increasing the bead size. For overnight , more than 20% of TCE was degraded. The variation of enzyme activity was tested for the repeated use of enzyme beads.

  • PDF

Ethanol Production an Immobilized Themotolerant Mutant of Brettanomyces custersii H1-39 from Wood Hydrolyzate Media (목질계 당화액배지로부터 고온내성 변이주 Brettanomyces custersii H1-39의 고정화에 의한 에탄올생산)

  • 박승원;홍영기;김승욱;홍석인
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.172-179
    • /
    • 2000
  • Bretlanomyces C!tstersii Hl-39 mutant was immobilized with various caniers. Immobilized mutant Hl-39 produced more ethanol and showed higher productivity and cell concentration than those of free 81-39 in 3.4% hydrolyzate of wood-chips at different temperatures ($37^{\circ}C$, $40^{\circ}C$ and $43^{\circ}C$). At $37^{\circ}C$, ethanol concentration produced by mutant H1-39 immobilized in Ca-alginate and ARG(l % Ca-alginate, 1.67% bentonite, 0.33% glutaraldehyde) bead were higher than those produced by the other earners (ACG ; 1 % CaHalginate. ] .67% celite R-634 , 0.33% glutaraldehyde, ABP ; 1 % Ca-alginate. 1.67% bentonite, 0.33% pectin. ACP: 1 % Ca-alginate, ] .67% celiLe R-634, 0.33% pecLin). The highest value of productivity(l.23 ) was obtained by using ABG beads. At $40^{\circ}C$, ethanol conccntration and productivity obtained by ABC beads ,>,"ere 15.2 glL and 0.84 gl L.h, respectively, which showed the highest value compared to other carriers. Particularly, productivity of ilmnobilized ceIl was increased up to 90% as compared to that offree cell. On the other hand, ABP(l % Ca-alginate+L67% bentonile+O.33% pectin) beads gave the best resulLs at $43^{\circ}C$ for production of ethanol and productivity, which were 13.8 g!l and 0.77 g/l h, respectively.ively.

  • PDF

Preparation and in Vitro Release of Melatonin-Loaded Multivalent Cationic Alginate Beads

  • Lee, Beom-Jin;Min, Geun-Hong;Kim, Tae-Wan
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.280-285
    • /
    • 1996
  • The sustained release dosage form which delivers melatonin (MT) in a circadian fashion over 8 h is of clinical value for those who have disordered circadian rhythms because of its short halflife. The purpose of this study was to evaluate the gelling properties and release characteristics of alginate beads varying multivalent cationic species $(Al^{+++}, \; Ba^{++}, \; Ca^{++}, \; Mg^{++}, \; Fe^{+++}, \; Zn^{++})$. The surface morphologies of Ca- and Ba-alginate beads were also studied using scanning electron microscope (SEM). MT, an indole amide pineal hormone was used as a model drug. The $Ca^{++}, \; Ba^{++}, \; Zn^{++}, \; Al^{++}\; and\; Fe^{+++}\; ions\; except\; Mg^{++}$ induced gelling of sodium alginate. The strength of multivalent cationic alginate beads was as follows: $Al^{+++}\llFe^{+++} the induced hydrogel beads were very fragile and less spherical. Fe-alginate beads were also fragile but stronger compared to Al-alginate beads. Ba-alginate beads had a similar gelling strength but was less spherical when compared to Ca-alginate beads. Zn-alginate beads were weaker than Ca- and Ba-alginate beads. Very crude and rough crystals of Ba- and Ca-alginate beads at higher magnifications were observed. However, the type and shape of rough crystals of Ba- and Ca-alginate beads were quite different. No significant differences in release profiles from MT-loaded multivalent cationic alginate beads were observed in the gastric fluid. Most drugs were continuously released upto 80% for 5 h, mainly governed by the passive diffusion without swelling and disintegrating the alginate beads. In the intestinal fluid, there was a significant difference iq the release profiles of MT-loaded multivalent cationic alginate beads. The release rate of Ca-alginate beads was faster when compared to other multivalent cationic alginate beads and was completed for 3 h. Ba-alginate beads had a very long lag time (7 h) and then rapidly released thereafter. MT was continuously released from Feand Zn-alginate beads with initial burstout release. It is assumed that the different release rofiles of multivalent cationic alginate beads resulted from forces of swelling and disintegration of alginate beads in addition to passive diffusion, depending on types of multivalent ions, gelling strength and drug solubility. It was estimated that 0.2M $CaCl_2$ concentration was optimal in terms of trapping efficiency of MT and gelling strength of Ca-alginate beads. In the gastric fluid, Ca-alginate beads gelled at 0.2 M $CaCl_2$ concentration had higher bead strength, resulting in the most retarded release when compared to other concentrations. In the intestinal fluid, the decreased release of Ca-alginate beads prepared at 0.2 M $CaCl_2$ concentration was also observed. However, release profiles of Ca-alginate beads were quite similar regardless of $CaCl_2$ concentration. Either too low or high $CaCl_2$ concentrations may not be useful for gelling and curing of alginate beads. Optimal $CaCl_2$ concentrations must be decided in terms of trapping efficiency and release and profiles of drug followed by curing time and gelling strength of alginate beads.

  • PDF

The Study of Antibiotic Resistance in Bacterial Biofilms (박테리아 생체막에 대한 항생제 내성 연구)

  • Kim Jin Wook;Joo Chi Un;Park Jin Yong;Lee Song Ae;Kim In Hae;Lee Jae Hwa
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.4
    • /
    • pp.157-160
    • /
    • 2005
  • Antibiotic resistance of bacteria in the biofilm mode of growth contributes to the chronicity of infection and disease. The penetration of antibiotic, through biofilm developed in an itt vitro model system was investigated. Antibiotic resistant bacteria (E. coli) were obtained from Culture Collection of Antibiotic Resistant Microbes. Ca-alginate bead used as simulated biofilm and a cell entrapment test using compressed air were experiment for the improvement cell viability. Antibiotic susceptibilities though biofilms was measured by assaying the concentration of antibiotic that diffused through the biofilm to minimal inhibition concentration (MIC). Survival of immobilized cells were reduced as compared to free cells. In case of antibiotic susceptible E. coli reduced continuously, but antibiotic resistant E. coli kept up survival rate constantly. Survival was showed after exposed to the antibiotics that the more treated antibiotic resistant E. coli and low concentration of antibiotics) the more survived.

  • PDF

Preparation and Release Characterization of Sodium Alginate Bead Containing Phytoncide Oil (편백정유를 함유한 알지네이트 비드의 제조 및 방출 특성)

  • Yoon, Doo-Soo;Lee, Eung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.557-562
    • /
    • 2018
  • High molecular weight sodium alginate (HMWSA)/low molecular weight sodium alginate (LMWSA) microcapsules containing phytoncide oil were prepared with different LMWSA contents. The effects of the stirring rate and ratio of HMWSA/LMWSA on the diameter and morphology of the phytoncide/alginate beads were investigated by optical microscopy and the release behaviors of phytoncide oil from the phytoncide/alginate beads were characterized by UV/Vis. spectrophotometry. The mean particle size of the phytoncide/alginate beads decreased with increasing stirring rate and concentration of the calcium chloride solution. The surface morphology of the phytoncide/alginate beads changed from smooth surfaces to skin-like rough surfaces with increasing LMWSA content. These results were due mainly to the increased hydrophilic groups at the bead surface, resulting in an increase in the release rate of phytoncide oil in the phytoncide/alginate beads.

Estimating the Viability of Bifidobacterium longum in Ca-Alginate Beads Against Simulated Gastroenteric Juices

  • Lee, Ki-Yong;Kim, Ji-Youn;Lee, Yoon-Jong;Choi, Eon-Ho;Shin, Dong-Hoon;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.97-105
    • /
    • 2001
  • The viability of Bifidobacterium longum KCTC 3128, entrapped in calcium alginate beds in simulated gastroenteric juices (gastric and bile salt solution), was tested to evaluate the influences of several parameters (gel concentration, bead size, and initial cell number). The death rate of B. longum in beads after being sequentially exposed to simulated gastric juices and bile salt solution decreased propertionally with increasing both the alginate gel concentration and bead size. The number of initial cell loading in beads affected the numbers of survivors after being exposed to these solutions, while the death rate of the viable cells were not affected. From the results obtained, the influence of entrapment parameters on the survival of bifidobacteria was quantitatively and systematically evaluated by using a mathematical method.

  • PDF