Ethanol Production an Immobilized Themotolerant Mutant of Brettanomyces custersii H1-39 from Wood Hydrolyzate Media

목질계 당화액배지로부터 고온내성 변이주 Brettanomyces custersii H1-39의 고정화에 의한 에탄올생산

  • Published : 2000.06.01

Abstract

Bretlanomyces C!tstersii Hl-39 mutant was immobilized with various caniers. Immobilized mutant Hl-39 produced more ethanol and showed higher productivity and cell concentration than those of free 81-39 in 3.4% hydrolyzate of wood-chips at different temperatures ($37^{\circ}C$, $40^{\circ}C$ and $43^{\circ}C$). At $37^{\circ}C$, ethanol concentration produced by mutant H1-39 immobilized in Ca-alginate and ARG(l % Ca-alginate, 1.67% bentonite, 0.33% glutaraldehyde) bead were higher than those produced by the other earners (ACG ; 1 % CaHalginate. ] .67% celite R-634 , 0.33% glutaraldehyde, ABP ; 1 % Ca-alginate. 1.67% bentonite, 0.33% pectin. ACP: 1 % Ca-alginate, ] .67% celiLe R-634, 0.33% pecLin). The highest value of productivity(l.23 ) was obtained by using ABG beads. At $40^{\circ}C$, ethanol conccntration and productivity obtained by ABC beads ,>,"ere 15.2 glL and 0.84 gl L.h, respectively, which showed the highest value compared to other carriers. Particularly, productivity of ilmnobilized ceIl was increased up to 90% as compared to that offree cell. On the other hand, ABP(l % Ca-alginate+L67% bentonile+O.33% pectin) beads gave the best resulLs at $43^{\circ}C$ for production of ethanol and productivity, which were 13.8 g!l and 0.77 g/l h, respectively.ively.

여러 재질의 담체를 이용하여 H1-39변이주를 고정화시켜 3.4% 목질계 당화액을 탄소원으로 $37^{\circ}C$, $40^{\circ}C$, $43^{\circ}C$에서 에탄올 발효를 하였는데 전반적으로 유리세포 배양시보다 에탄올 수율, 생산성, 세포수율, 세포 생존율이 향상되었다 온도 37$^{\circ}C$에서는 Ca-alginate와 ABG bead에 고정화된 H1-39변이주에서 각각 가장 높은 14.8 g/1의 에탄올을 생산하였으며 특히 H1-39변이주를 ABG bead에 고정화하여 배양하였을 때 생산성이 1.23g/1-h로 가장높았다. $40^{\circ}C$에서는 ABG bead에 고정화된 H1-39 변이주에서 가장높은 15.2g/1의 에탄올을 생산하였으며 생산성도 0.84g/1-h 로 유리세포 배양시보다 약 91% 증가하였다. 한편 $43^{\circ}C$에서는 ABP고정화 배양을 통해 가장 높은 13.8g/1의 에탄올 생산과 0.77g/1-h의 생산성을 나타내어 유리세포 배양시 보다 각각 14%와 93%의 증가를 보였다.

Keywords

References

  1. Appl. Biochem. Biotechnol. v.28 Selection of thermotolerant yeasts for simultaneous saccharification and fermentation of cellulose to ethanol Ballesteros, I.;M. Ballesteros;A. Cabanas;J. Carrasco;C. Martin;M. Negro;F. Saez;R. Saez
  2. Methods of Enzymatic analysis v.3 Ethanol determination with alcohol dehydrogenase and NAD Bernet, E.;I. Gutmann;H. U. Bergmeyer(ed.)
  3. Biotechnol. Bioeng. v.24 A study of cellobiose fermentation by a Dekkera strain Blondin, B.;R. Ratomahemia;A. Arnaud;P. Galzy
  4. Biotechnol. Bioeng. v.21 Physical studies on cell immobilization using calcium alginate gels Cheetham, P. S. J.;K. Blunt;C. Bucke
  5. Biotechnol. Bioeng. v.25 Characterization of cellobiose fementation to ethanol by yeasts Freer, S. N.;R. W. Detroy
  6. Process Biochem. v.4 A survey of continuous ethanol fermentation systems using immobilized cells Goida, F.;C. Casas;C. Sola
  7. J. Ferment. Technol. v.60 Selection of yeast strains for cellobiose alcoholic fermentation Gonde, P.;B. Blondin;R. Ratomahenina;A. Arnaud;P. Galzy
  8. Appl. Microbiol. Biotechnol. v.19 Selection of yeast able to produce ethanol from glucose at 40℃ Hacking A. J.;I. W. F. Taylor;C. M. Hanas
  9. Kor. J. Appl. Microbiol. Biotechnol. v.20 Ethanol production using alginate immobilized cells of Zymomonas mobilis Han, M. S.;D. H. Chung
  10. J. Solid Phase Biochem. v.5 Entrapment of living microbial cells in covalent polymeric networks: I. Preparation and properties of different networks Klein, J.;P. Schara
  11. Enzyme. Microb. Technol. v.5 Performance of immobilzed yeast reactor systme for ethanol production Lee, T. H.;J. C. Ahn;D. Y. Ryu
  12. The Yeast(2nd ed.) Lodder, J.
  13. Appl. Biochem. Biotechnol. v.77/79 Simultaneous saccharification and cofermentation of dilute-acid pretreated popur hardwood to ethanol using xylose-fermenting Zymomonas mobilis McMiillan, J.D.;M.M. Newman;D.W. Templetion;A. Mohagheghi
  14. Anal. Chem. v.31 Use of dinitrosalicyclic acid reagent for determination of reducing sugar Miller, G.L.
  15. Appl. Biochem. Biotechnol v.77/79 Dilute acid hydrolysis of softwoods Nguyen, Q.A.;M.P. Tucker;F.A. Keller;D.A. Beaty;K.M. Connors;F.P. Eddy
  16. Appl. Biochem. Biotechnol. v.77/79 Bioconversion of mixed solids waste to ethanol Nguyen, Q.A.;F.A. Keller;M.P. Tucker;C.K. Lombard;B.M. Jenkins;D.E. Yomogida;V.M. Tiangco
  17. Enzyme Microb. Technol. v.9 Cell immobilization: Application to alcohol production Nunez, M.J.;J.M. Lema
  18. Kor. J. Appl. Microbiol. Biotechnol. v.27 Development of strain fermenting the glucose/cellobiose mixed sugar for simultaneous saccharification and fementation of cellulosic materials Park, S.W.;Y.K. Hong;S.W. Kim;S.I. Hong
  19. Trends Biotechnol. v.8 Alginate as immobilization matrix for cells Smidsrd, O.;G Skjak
  20. J. Kor. Microbiol. Biotechnol. v.4 The fermentation characteristics of newly selected thermotolerant yeasts at high temperature Sohn, H.;Y.W. Park;I.N. Jin
  21. Biotechnol. Bioeng. v.31 Selection of thermotolerant yeast strains for simultaneous saccharification ane fermentation of cellulose Szczodrak, J.;Z. Targonski
  22. J. Inst. Brewing. v.83 Growth of Saccharomyces cerevisiae and Saccharomyces uvarum in a temperature gradient incubator Walsh, R. M.;P. A. Martin
  23. Agric. Biol. Chem. v.55 Saccharomyces yeast cells grain at elevated temperatures are susceptible to autolysis Yamamura, M.;K. Takes;T. Kanihare