• Title/Summary/Keyword: CYP3A

검색결과 493건 처리시간 0.277초

Effect of Allium sativum on cytochrome P450 and possible drug interactions

  • Janil, Ashutosh;Mehta, Anita A
    • Advances in Traditional Medicine
    • /
    • 제6권4호
    • /
    • pp.274-285
    • /
    • 2006
  • Allium sativum (Family Amaryllidaceae or Liliaceae) is used worldwide for various clinical uses like hypertension, cholesterol lowering effect, antiplatelets and fibrinolytic activity etc. Due to these common house hold uses of Allium sativum, as a herbal supplements, and failure of patients to inform their physician of the over-the-counter supplements they consume leads to drugnutrient interactions with components in herbal supplements. Today these types of interactions between a herbal supplement and clinically prescribed drugs are an increasing concern. In vitro studies indicated that garlic constituents modulated various CYP (cytochrome P450) enzymes. CYP 3A4 is abundantly present in human liver and small intestine and contributes to the metabolism of more than 50% of commonly used drugs including nifedipine, cyclosporine, erythromycin, midazolam, alprazolam, and triazolam. Extracts from fresh and aged garlic inhibited CYP 3A4 in human liver microsomes. The in vivo effects of garlic constituents are found to be species depended and the dosing regimen of garlic constituents appeared to influence the modulation of various CYP isoforms. Studies have indicated that the inhibition of various CYPs by organosulfur compounds from garlic was related to their structure also. Studies using in vitro, in vivo, animal and human models have indicated that various garlic constituents can be the substrates, inhibitors and or inducers of various CYP enzymes. The modulation of CYP enzyme activity and expression are dependent on the type and chemical structure of garlic constituents, dose regime, animal species and tissue, and source of garlic thus this review throws light on the possible herb drug interaction with the use of garlic.

The Flavin-Containing Reductase Domain of Cytochrome P450 BM3 Acts as a Surrogate for Mammalian NADPH-P450 Reductase

  • Park, Seon-Ha;Kang, Ji-Yeon;Kim, Dong-Hyun;Ahn, Taeho;Yun, Chul-Ho
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.562-568
    • /
    • 2012
  • Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is a self-sufficient monooxygenase that consists of a heme domain and FAD/FMN-containing reductase domain (BMR). In this report, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) by BMR was evaluated as a method for monitoring BMR activity. The electron transfer proceeds from NADPH to BMR and then to BMR substrates, MTT and CTC. MTT and CTC are monotetrazolium salts that form formazans upon reduction. The reduction of MTT and CTC followed classical Michaelis-Menten kinetics ($k_{cat}=4120\;min^{-1}$, $K_m=77{\mu}M$ for MTT and $k_{cat}=6580\;min^{-1}$, $K_m=51{\mu}M$ for CTC). Our continuous assay using MTT and CTC allows the simple, rapid measurement of BMR activity. The BMR was able to metabolize mitomycin C and doxorubicin, which are anticancer drug substrates for CPR, producing the same metabolites as those produced by CPR. Moreover, the BMR was able to interact with CYP1A2 and transfer electrons to promote the oxidation reactions of substrates by CYP1A2 and CYP2E1 in humans. The results of this study suggest the possibility of the utilization of BMR as a surrogate for mammalian CPR.

복숭아혹진딧물 야외개체군의 λ-cyhalothrin, imidacloprid, 그리고 flupyradifurone에 대한 저항성 모니터링과 점 돌연변이 분석 (Resistance Monitoring and Analysis of Point Mutations to λ-cyhalothrin, Imidacloprid, and Flupyradifurone in Field-collected Populations of Myzus persicae (Hemiptera: Aphididae))

  • 문하현;이유노;강동현;김세은;김현경;구현나;김길하
    • 한국응용곤충학회지
    • /
    • 제63권1호
    • /
    • pp.33-42
    • /
    • 2024
  • 복숭아혹진딧물(Myzus persicae)은 다식성으로 담배, 감자, 고추, 배추, 복숭아 등에 심각한 피해를 입히는 대표적인 농업해충이다. 본 연구에서는 국내 복숭아혹진딧물 야외개체군의 λ-cyhalothrin, imidacloprid 및 flupyradifurone에 대한 약제 저항성 발달 수준과 점 돌연변이(R81T, L1014F, M918L)의 발생 여부를 확인하였다. 또한, qRT-PCR을 통해 사이토크롬 P450 유전자인 CYP6CY3 발현량을 확인하였다. 그 결과, λ-cyhalothrin은 저항성비(Resistance Ratio, RR)가 12개 모든 지역이 > 200으로 높은 저항성을 보였다. Imidacloprid와 flupyradifurone은 YS, UR, HY, 그리고 WJ 개체군에서 > 200의 저항성비로 높은 저항성을 나타냈다. R81T는 12개 집단 중 약 50%, L1014F는 약 33.3%, M918L은 100%에서 발현하였다. 또한 qRT-PCR을 통해 imidacloprid 저항성 개체에서 subunit CYP6CY3의 발현량이 높게 나타난 것을 확인하였다. 이러한 결과는 M918L 점 돌연변이는 λ-cyhalothrin 저항성 진단마커로, R81T와 CYP6CY3의 높은 발현은 imidacloprid 저항성 진단마커로 활용이 가능하다는 것을 시사한다.

Negligible Effect of Ginkgo Biloba Extract on the Pharmacokinetics of Cilostazol

  • Chung, Hye-Jin;Kim, Nam-Sun;Kim, Eun-Jeong;Kim, Tae-Kon;Ryu, Keun-Ho;Lee, Bong-Yong;Kim, Dong-Hyun;Jin, Chang-Bae;Yoo, Hye-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제17권3호
    • /
    • pp.311-317
    • /
    • 2009
  • Ginkgo biloba (G. biloba) extract is a widely used phytomedicine for the oral treatment of peripheral vascular disease. Cilostazol is a synthetic antiplatelet and vasodilating agent for the treatment of intermittent claudication resulting from peripheral arterial disease. It is likely to use concomitantly G. biloba extract and cilostazol for the treatment of peripheral arterial disease, which raises a concern of increasing their adverse effects of herbal-drug interactions. To clarify any possible herbal-drug interaction between G. biloba extract and cilostazol, the effect of the G. biloba extract on the pharmacokinetics of cilostazol was investigated. As cilostazol is known to be eliminated mainly by cytochrome P450 (CYP)-mediated metabolism, we investigated the effects of G. biloba extract on the human CYP enzyme activities and the effect of G. biloba extract on the pharmacokinetics of cilostazol after co-administration of the two agents to male beagle dogs. The G. biloba extract inhibited more or less CYP2C8, CYP2C9, and CYP2C19 enzyme activities in the in vitro microsomal study with $IC_{50}$ values of 30.8, 60.5, and $25.2{\mu}g/ml$, respectively. In the pharmacokinetic study, co-administration with the G. biloba extract had no significant effect on the pharmacokinetics of cilostazol in dogs, although CYP2C has been reported to be responsible for the metabolism of cilostazol. In conclusion, these results suggest that there may not be a pharmacokinetic interaction between G. biloba extract and cilostazol.

Ginsenoside Rb1 Inhibits Doxorubicin-Triggered H9C2 Cell Apoptosis via Aryl Hydrocarbon Receptor

  • Zhang, Yaxin;Wang, Yuguang;Ma, Zengchun;Liang, Qiande;Tang, Xianglin;Tan, Hongling;Xiao, Chengrong;Gao, Yue
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.202-212
    • /
    • 2017
  • Doxorubicin (DOX) is a highly effective chemotherapeutic agent; however, the dose-dependent cardiotoxicity associated with DOX significantly limits its clinical application. In the present study, we investigated whether Rb1 could prevent DOX-induced apoptosis in H9C2 cells via aryl hydrocarbon receptor (AhR). H9C2 cells were treated with various concentrations ($-{\mu}M$) of Rb1. AhR, CYP1A protein and mRNA expression were quantified with Western blot and real-time PCR analyses. We also evaluated the expression levels of caspase-3 to assess the anti-apoptotic effects of Rb1. Our results showed that Rb1 attenuated DOX-induced cardiomyocytes injury and apoptosis and reduced caspase-3 and caspase-8, but not caspase-9 activity in DOX-treated H9C2 cells. Meanwhile, pre-treatment with Rb1 decreased the expression of caspase-3 and PARP in the protein levels, with no effects on cytochrome c, Bax, and Bcl-2 in DOX-stimulated cells. Rb1 markedly decreased the CYP1A1 and CYP1A2 expression induced by DOX. Furthermore, transfection with AhR siRNA or pre-treatment with AhR antagonist CH-223191 significantly inhibited the ability of Rb1 to decrease the induction of CYP1A, as well as caspase-3 protein levels following stimulation with DOX. In conclusion, these findings indicate that AhR plays an important role in the protection of Ginsenoside Rb1 against DOX-triggered apoptosis of H9C2 cells.

Genetic Polymorphisms and Cancer Susceptibility of Breast Cancer in Korean Women

  • Kang, Dae-Hee
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.28-34
    • /
    • 2003
  • Breast cancer is the most prevalent cancer among women in Western countries, and its prevalence is also increasing in Asia. The major risk factor for breast cancer can be traced to reproductive events that influence the lifetime levels of hormones. However, a large percentage of breast cancer cases cannot, be explained by these risk factors. The identification of susceptibility factors that predispose individuals to breast cancer (for instance, if they are exposed to particular environmental agents) could possibly give further insight into the etiology of this malignancy and provide targets for the future development of therapeutics. The most interesting candidate genes include those that mediate a range of functions. These include carcinogen metabolism, DNA repair, steroid hormone metabolism, signal transduction, and cell cycle control. We conducted a hospital-based case-control study in South Korea to evaluate the potential modifying role of the genetic polymorphisms of selected low penetrance genes that are involved in carcinogen metabolisms (i.e., CYP1A1, CYP2E1, GSTM1/T1/P1, NAT1/2, etc.), estrogen synthesis and metabolism (i.e., CYP19, CYP17, CYP1B1, COMT, ER-$\alpha$, etc.), DNA repair (i.e., XRCC1/3, ERCC2/4, ATM, AGT, etc.), and signal transduction as well as others (i.e., TGF-$\beta$, IGF-1, TNF-$\beta$, IL-1B, IL-1RN, etc.). We also took into account the potential interaction between these and the known risk factors of breast cancer. The results of selected genes will be presented in this mini-review.

불임여성에서 NAT2, GSTM1, CYP1A1 유전자 다형성과 자궁내막증의 상관관계에 관한 연구 (Association between Endometriosis and Polymorphisms of N-acetyl Transferase 2 (NAT2), Glutathione S-transferase M1 (GSTM1) and Cytochrome P450 (CYP) 1A1 Genes in Korean Infertile Patients)

  • 송현정;전진현;최혜원;허걸;강인수;궁미경;이형송
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권2호
    • /
    • pp.141-147
    • /
    • 2004
  • Objective: To investigate the association between endometriosis and polymorphisms of N-acetyl transferase 2 (NAT2), glutathione S-transferase M1 (GSTM1), and cytochrome P450 (CYP) 1A1 genes in Korean infertile patients. Materials and Methods: A total of 303 infertile patients who had undertaken diagnostic laparoscopy during January, 2001 through December, 2003 at Samsung Cheil Hospital enrolled in this study. The patients were grouped according to laparoscopic findings: minimal to mild endometriosis (group I: n=147), moderate to severe endometriosis (group II: n=57), normal pelvic cavity (n=99). Peripheral blood was obtained and genomic DNA was extracted. The genotypes of each genes were analyzed using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). For NAT2, RFLP was used to detect the wild type (wt) and mutant (mt) alleles, enabling classification into slow (mt/mt) or fast (wt/wt or wt/mt) acetylation genotypes. For GSTM1, PCR was used to distinguish active (+/- or +/+) from null (-/-) genotypes. For CYP1A1, MspI digestion was used to detect the wild type (A1A1), heterozygote (A1A2) or mutant (A2A2) genotypes. Result: The genotype frequencies of NAT2 slow acetylator was 12.8%, 10.9%, 12.8% in group I, group II and control, respectively. The genotype frequencies of GSTM1 null mutation was 55.3%, 41.8%, 53.2% in group I, group II and control, respectively. The genotype frequencies of CYP1A1 MspI polymorphism was 16.3%, 9.1%, 18.1% in group I, group II and control, respectively. No significant difference was observed between endometriosis and normal controls in the genotype frequencies of the NAT2, GSTM1, CYP1A1 MspI polymorphism. Conclusion: The NAT2, GSTM1, CYP1A1 gene polymorphism may not be associated with the susceptibility of endometriosis in Korean women.

한국인 흡연자들의 담배 물질 대사 효소의 유전자 다형성에 따른 폐기능 차이 (Difference in Lung Functions according to Genetic Polymorphism of Tobacco Substance Metabolizing Enzymes of Korean Smokers)

  • 강윤정
    • 융합정보논문지
    • /
    • 제10권5호
    • /
    • pp.134-142
    • /
    • 2020
  • 흡연자들의 흡연 물질 대사효소의 유전적 다형성에 따른 폐기능의 차이를 보기 위하여 질병력과 정신과적 병력이 없는 신체적·정신적으로 건강한 만 20~27세 이하의 흡연자 31명( 남 29, 여 3)을 대상으로 연구를 진행하였다. 폐활량 측정기(Wright Respirometer, Ferraris Development and Engineering Co, Ltd, UK)를 이용하여, 노력성 폐활량(Forced vital capacity, FVC), 1초간 노력성 호기량(Forced expiratory volume at one second, FEV 1), 1초간 노력성 호기량의 노력성 폐활량에 대한 비(FEV1 % FVC)을 측정하였으며, 유전자 검사는 DNA로 PCR하여 CYP1A1과 TP53의 유전자 발현검사를 하였다. 실험결과 유전자 돌연변이형이 없는 TT와 Arg/Arg의 폐기능 평균값이 가장 높았으며, CYP1A1와 lung functions의 ANOVA 분석에서 FVC의 P-값이 0.049로 그룹 간의 차이가 있는 것으로 나타났다. 즉 담배성분의 대사 활성화와 연관이 많은 Cytochrome P-450 1A1 (CYP1A1) 유전자의 돌연변이형이 없을때 FVC의 값이 높게 나타난 것이다.

Whole-exome sequencing analysis in a case of primary congenital glaucoma due to the partial uniparental isodisomy

  • Zavarzadeh, Parisima Ghaffarian;Bonyadi, Morteza;Abedi, Zahra
    • Genomics & Informatics
    • /
    • 제20권3호
    • /
    • pp.28.1-28.7
    • /
    • 2022
  • We described a clinical, laboratory, and genetic presentation of a pathogenic variant of the CYP1B1 gene through a report of a case of primary congenital glaucoma and a trio analysis of this candidate variant in the family with the Sanger sequencing method and eventually completed our study with the secondary/incidental findings. This study reports a rare case of primary congenital glaucoma, an 8-year-old female child with a negative family history of glaucoma and uncontrolled intraocular pressure. This case's whole-exome sequencing data analysis presents a homozygous pathogenic single nucleotide variant in the CYP1B1 gene (NM_000104:exon3:c.G1103A:p.R368H). At the same time, this pathogenic variant was obtained as a heterozygous state in her unaffected father but not her mother. The diagnosis was made based on molecular findings of whole-exome sequencing data analysis. Therefore, the clinical reports and bioinformatics findings supported the relation between the candidate pathogenic variant and the disease. However, it should not be forgotten that primary congenital glaucoma is not peculiar to the CYP1B1 gene. Since the chance of developing autosomal recessive disorders with low allele frequency and unrelated parents is extraordinary in offspring. However, further data analysis of whole-exome sequencing and Sanger sequencing method were applied to obtain the type of mutation and how it was carried to the offspring.

Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet

  • Kim, Min-Ji;Kim, Yang-Ha
    • Nutrition Research and Practice
    • /
    • 제4권3호
    • /
    • pp.191-195
    • /
    • 2010
  • There is an increasing interest in curcumin (Curcuma longa L.) as a cardiovascular disease (CVD) protective agent via decreased blood total cholesterol and low-density lipoprotein-cholesterol (LDL-cholesterol) level. The aim of this study was to investigate further the potential mechanism in the hypocholesterolemic effect of curcumin by measuring cholesterol 7a-hydroxylase (CYP7A1), a rate limiting enzyme in the biosynthesis of bile acid from cholesterol, at the mRNA level. Male Sprague-Dawley rats were fed a 45% high fat diet or same diet supplemented with curcumin (0.1% wt/wt) for 8 weeks. The curcumin diet significantly decreased serum triglyceride (TG) by 27%, total cholesterol (TC) by 33.8%, and LDL-cholesterol by 56%, respectively as compared to control group. The curcumin-supplemented diet also significantly lowered the atherogenic index (AI) by 48% as compared to control group. Hepatic TG level was significantly reduced by 41% in rats fed with curcumin-supplemented diet in comparison with control group (P < 0.05). Conversely, the curcumin diet significantly increased fecal TG and TC. The curcumin diet up-regulated hepatic CYP7A1 mRNA level by 2.16-fold, compared to control group p (P < 0.05). These findings suggested that the increases in the CYP7A1 gene expression may partially account for the hypocholesterolemic effect of curcumin.