• 제목/요약/키워드: CYP1A2

검색결과 511건 처리시간 0.035초

건강한 한국인에서 미다졸람 집단약동학 분석: CYP3A 매개 약물상호작용 평가 (Population Pharmacokinetics of Midazolam in Healthy Koreans: Effect of Cytochrome P450 3A-mediated Drug-drug Interaction)

  • 신광희
    • 한국임상약학회지
    • /
    • 제26권4호
    • /
    • pp.312-317
    • /
    • 2016
  • Objective: Midazolam is mainly metabolized by cytochrome P450 (CYP) 3A. Inhibition or induction of CYP3A can affect the pharmacological activity of midazolam. The aims of this study were to develop a population pharmacokinetic (PK) model and evaluate the effect of CYP3A-mediated interactions among ketoconazole, rifampicin, and midazolam. Methods: Three-treatment, three-period, crossover study was conducted in 24 healthy male subjects. Each subject received 1 mg midazolam (control), 1 mg midazolam after pretreatment with 400 mg ketoconazole once daily for 4 days (CYP3A inhibition phase), and 2.5 mg midazolam after pretreatment with 600 mg rifampicin once daily for 10 days (CYP3A induction phase). The population PK analysis was performed using a nonlinear mixed effect model ($NONMEM^{(R)}$ 7.2) based on plasma midazolam concentrations. The PK model was developed, and the first-order conditional estimation with interaction was applied for the model run. A three-compartment model with first-order elimination described the PK. The influence of ketoconazole and rifampicin, CYP3A5 genotype, and demographic characteristics on PK parameters was examined. Goodness-of-fit (GOF) diagnostics and visual predictive checks, as well as bootstrap were used to evaluate the adequacy of the model fit and predictions. Results: Twenty-four subjects contributed to 900 midazolam concentrations. The final parameter estimates (% relative standard error, RSE) were as follows; clearance (CL), 31.8 L/h (6.0%); inter-compartmental clearance (Q) 2, 36.4 L/h (9.7%); Q3, 7.37 L/h (12.0%), volume of distribution (V) 1, 70.7 L (3.6%), V2, 32.9 L (8.8%); and V3, 44.4 L (6.7%). The midazolam CL decreased and increased to 32.5 and 199.9% in the inhibition and induction phases, respectively, compared to that in control phase. Conclusion: A PK model for midazolam co-treatment with ketoconazole and rifampicin was developed using data of healthy volunteers, and the subject's CYP3A status influenced the midazolam PK parameters. Therefore, a population PK model with enzyme-mediated drug interactions may be useful for quantitatively predicting PK alterations.

Association of gastric cancer with cytochrome P450 2C19 single-nucleotide polymorphisms in Koreans

  • Kim, Hyun-Ju;Park, Hye-Jung;Lee, Sang-Gyu;Lee, Hye-Suk;Park, Won-Cheol;Kim, Jeong-Joong;Oh, Gyung-Jae;Kim, Yun-Kyung
    • Advances in Traditional Medicine
    • /
    • 제7권4호
    • /
    • pp.357-362
    • /
    • 2007
  • Cytochrome P450 2C19 (CYP2C19) is a clinically important enzyme involved in the metabolism of therapeutic drugs, including (S)-mephenytoin, omeprazole, proguanil, and diazepam. Individuals are characterized as either extensive metabolizers (EM) or poor metabolizers (PM) on the basis of CYP2C19 enzyme activity. The PM phenotype occurs in 2-5% of Caucasians, but in 18-23% of Asians. To clarify the association between CYP2C19 polymorphisms and gastric cancer in Koreans, we investigated CYP2C19 genotypes ($CYP2C19^*1,\;{^*2},\;and\;^*3$) in 109 patients with gastric cancer and 211 controls. Normal ($CYP2C19^*1$) and defective alleles were detected with polymerase chain reaction/restriction enzyme analysis. CYP2C19 has three hereditary genotypes: homozygous EM, with high enzymatic activity; heterozygous EM, with moderate enzymatic activity; and PM, with no enzyme activity. We found that CYP2C19 heterozygous EM is more closely associated with gastric cancer than is homozygous EM. Because the CYP2C19 genotype varies in Koreans, a genotyping test is desirable to prevent gastropathy recurrence in patients before their doses of omeprazole are reduced during maintenance therapy.

Histone Deacetylase Inhibitor Stimulate CYP3A4 Proximal Promoter Activity in HepG2 Cells

  • Kim Ja Young;Ahn Mee Ryung;Kim Dae-Kee;Sheen Yhun Yhong
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.407-414
    • /
    • 2004
  • The expression of CYP3A4 gene is induced by a variety of structurally unrelated xenobiotics including the antibiotic rifampicin, pregnenolone 16-carbonitrile (PCN), and endogenous hormones, that might mediate through steroid and xenobiotic receptor (SXR) system. The molecular mechanisms underlying regulation of CYP3A4 gene expression have not been understood. In order to gain the insight of the molecular mechanism of CYP3A4 gene expression, study has been undertaken to investigate if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter in human hepatoma HepG2 cells. Also we have investigated to see if SXR is involved in the regulation of CYP3A4 proximal promoter activity in human hepatoma HepG2 cells. HepG2 cells were transfected with a plasmid PCYP3A4-Luc containing ${\~}1kb$ of the CYP3A4 proximal promoter region (-863 to +64 bp) in front of a reporter gene, luciferase, in the presence or absence of pSAP-SXR. In HepG2 cells, CYP3A4 inducers, such as rifampicin, PCN and RU486 showed minimal stimulation of CYP3A4 proximal promoter activity in the absence of SXR and histone deacetylase (HDAC) inhibitors. 4-Dimethylamino-H-[4-(2-hydroxycarbamoylvinyl)benzyl]benzamide (IN2001), a new class HDAC inhibitor significantly increased CYP3A4 proximal promoter activity over untreated control cells and rifampicin concomitant treatment with IN2001 increased further CYP3A4 proximal promoter activity that was stimulated by IN2001 The results of this study demon-strated that both HDAC inhibitors and SXR are essential to increase of CYP3A4 proximal promoter activity by CYP3A4 inducers such as PCN, rifampicin, and RU486. Especially SXR seems to be important for the dose dependent response of CYP3A4 inducing chemicals to stimulate CYP3A4 proximal promoter activity. Also this data suggested that HDAC inhibitors seemed to facilitate the CYP3A4 proximal promoter to be activated by chemicals.

Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay

  • Kim, Young-Hoon;Bae, Young-Ji;Kim, Hyung Soo;Cha, Hey-Jin;Yun, Jae-Suk;Shin, Ji-Soon;Seong, Won-Keun;Lee, Yong-Moon;Han, Kyoung-Moon
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.486-492
    • /
    • 2015
  • Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their interassay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.

불임여성에서 NAT2, GSTM1, CYP1A1 유전자 다형성과 자궁내막증의 상관관계에 관한 연구 (Association between Endometriosis and Polymorphisms of N-acetyl Transferase 2 (NAT2), Glutathione S-transferase M1 (GSTM1) and Cytochrome P450 (CYP) 1A1 Genes in Korean Infertile Patients)

  • 송현정;전진현;최혜원;허걸;강인수;궁미경;이형송
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권2호
    • /
    • pp.141-147
    • /
    • 2004
  • Objective: To investigate the association between endometriosis and polymorphisms of N-acetyl transferase 2 (NAT2), glutathione S-transferase M1 (GSTM1), and cytochrome P450 (CYP) 1A1 genes in Korean infertile patients. Materials and Methods: A total of 303 infertile patients who had undertaken diagnostic laparoscopy during January, 2001 through December, 2003 at Samsung Cheil Hospital enrolled in this study. The patients were grouped according to laparoscopic findings: minimal to mild endometriosis (group I: n=147), moderate to severe endometriosis (group II: n=57), normal pelvic cavity (n=99). Peripheral blood was obtained and genomic DNA was extracted. The genotypes of each genes were analyzed using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). For NAT2, RFLP was used to detect the wild type (wt) and mutant (mt) alleles, enabling classification into slow (mt/mt) or fast (wt/wt or wt/mt) acetylation genotypes. For GSTM1, PCR was used to distinguish active (+/- or +/+) from null (-/-) genotypes. For CYP1A1, MspI digestion was used to detect the wild type (A1A1), heterozygote (A1A2) or mutant (A2A2) genotypes. Result: The genotype frequencies of NAT2 slow acetylator was 12.8%, 10.9%, 12.8% in group I, group II and control, respectively. The genotype frequencies of GSTM1 null mutation was 55.3%, 41.8%, 53.2% in group I, group II and control, respectively. The genotype frequencies of CYP1A1 MspI polymorphism was 16.3%, 9.1%, 18.1% in group I, group II and control, respectively. No significant difference was observed between endometriosis and normal controls in the genotype frequencies of the NAT2, GSTM1, CYP1A1 MspI polymorphism. Conclusion: The NAT2, GSTM1, CYP1A1 gene polymorphism may not be associated with the susceptibility of endometriosis in Korean women.

사염화탄소로 유도된 Cytochrome P-450 활성도의 전환으로 본 Hedera rhombea 잎의 메탄올 추출물의 간독성 감소작용 (Chemoprotective Effect of Methanol Extract of Hedera rhombea Loaves on the Reversal of Cytochrome P-450 Activities Induced by Carbon Tetrachloride)

  • 홍영숙;김형래;배영숙;박상신
    • Biomolecules & Therapeutics
    • /
    • 제3권4호
    • /
    • pp.245-250
    • /
    • 1995
  • The carbon tetrachloride($CCl_4$) has been demonstrated to have a hepatotoxic effect in human or many other species. To investigate the enzyme induction of mixed function oxygenases in liver of male Sprague-Dawley rats a single 0.1, 0.5 mι/kg dose of carbon tetrachloride were given. At 24 hr after a single dose of 0.1 mι CC1$_4$/kg weight, methanol extract of Hedera rhombea leaves was administered with 100, 500 mg/kg weight. Assays of 7-ethoxyresorufin-Ο-deethylation(EROD),7-benzyloxyresorufin-Ο-deathylation(BROD),4-nitro-phenol-UDP-glucuronosyltransferase(UDPGT), Western blot and RNA slot blot were used as representatives of the activities of cytochrome P-450 enzymes. The change of the activity of CYP1A1 form measured by EROD assay and Western analysis using 1-7-1 monoclonal antibody was not observed. The activity CYP2B1 form by BROD assay and using 2-66-3 monoclonal antibody was remarkably increased. Elevated level of CYP2B1 mRNA was shown by slot hybridization with 2B1-specific probe. Administration of methanol extract of Hedera rhombea leaves reversed the enzyme activity and the level of mRNA, which suggest the chemoprotective effect of methanol extracts of Hedera rhombea leaves to carbon tetrachloride hepatotoxlcity.

  • PDF

다환성방향족탄화수소 노출에 대한 감수성에 미치는 CYP2E1의 작용 (Action-mechanisms of Genetic Polymorphism in the CYP2E1 on Susceptibility to Polycyclic Aromatic Hydrocarbons)

  • 강혁준;박장환;강진선;동미숙;양미희
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권3호
    • /
    • pp.215-221
    • /
    • 2005
  • Environmental polycyclic aromatic hydrocarbones (PAHs), which are formed during incomplete combustion of fossil fuels, are widely distributed in our environment. Human exposure to PAHs may occur through smoking, polluted air, food consumption and occupational contact. Urinary naphthols, 1-and 2-naphthol, have been suggested as route -specific biomarkers for exposure to airborne PAHs. Cytochrome p450 2E1 (CYP2E1) is known to be a great importance for the metabolism of organic solvents, which is a precacinogens with small molecular weight. This study describes the metabolic differences between PstI and RsaI polymorphisms (c1 allele: PstI-. RsaI+ ; c2 allele: PstI+, RsaI-) of CYP2E1 5-flanking region by genetically modified HepG2 cells, which overexpress the polymorphic regions. The results of CAT assay and western blot in the c2 allele overexpressed cells have higher activities than the cl allele over-expressing cells. However, the metabolism of naphthalene to 2-naphthol has no difference due to the two genotypes. In this study, we established the CYP2E1 polymorphic allele transduced HepG2 cells to screen susceptibility -differences in PAH exposure. In conclusion, the CYP2E1 polymorphism may hardly induce susceptibility differences in PAH exposure monitoring with urinary naphthols.

황백의 주요 구성 화합물에 의한 약물대사효소 및 약물수송단백 저해능 평가 (Inhibition of Drug-metabolizing Enzyme and Drug Transporter by Major Components of Phellodendri cortex)

  • 구혜영;김현미;손지홍;유광현
    • 한국해양바이오학회지
    • /
    • 제1권3호
    • /
    • pp.213-217
    • /
    • 2006
  • 본 연구는 황백에 함유되어 있는 주요 화합물인 berberine, palmatine, limonin 및 rutaecarpine의 CYP2D6 및 p-glycoprotein 활성에 대한 저해정도를 탐색함으로써, 황백을 다른 양약과 병용시 약물상호작용을 유발할 수 있는 가능성을 평가하고자 하였다. 인체 간 마이크로좀 시료에 CYP2D6 동효소의 기질약물인 dextromethorphan과 NADPH 재생성계 및 저해제 ($200{\mu}M$)를 첨가한 후 반응시켜 생성된 대사물을 LC/MS/MS를 이용하여 정량하여 CYP2D6 동효소 활성의 변화를 평가하였다. 또한 약물수송단백인 p-glycoprotein의 활성은 L-MDR1 세포주를 이용한 calcein AM 축적 실험을 통하여 평가하였다. 그 결과 식물 알카로이드인 berberine에서 강력한 CYP2D6 활성 저해능을 관찰하였으며, 저해 효과는 농도 의존적으로 증가하였으며, mechanism-based 저해 기전을 나타내었다. 그러나 limonine과 rutaecarpine은 CYP2D6 저해 활성을 보이지 않았고, p-glycoprotein 기능에 대해서는 평가한 어떤 화합물도 저해 활성을 나타내지 않았다. 황백의 주요 성분인 berberine의 CYP2D6 활성 저해능을 고려할 때, 황백을 CYP2D6 기질약제와 병용시 약물상호작용을 유발할 가능성을 보여준다. 이러한 황백의 CYP2D6를 매개로한 임상적인 약물상호작용 가능성은 임상시험을 통하여 추가적인 검정이 필요할 것으로 사료된다.

  • PDF

The Role of CYP2B6*6 Gene Polymorphisms in 3,5,6-Trichloro-2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers

  • Liem, Jen Fuk;Suryandari, Dwi A.;Malik, Safarina G.;Mansyur, Muchtaruddin;Soemarko, Dewi S.;Kekalih, Aria;Subekti, Imam;Suyatna, Franciscus D.;Pangaribuan, Bertha
    • Journal of Preventive Medicine and Public Health
    • /
    • 제55권3호
    • /
    • pp.280-288
    • /
    • 2022
  • Objectives: One of the most widely used pesticides today is chlorpyrifos (CPF). Cytochrome P450 (CYP)2B6, the most prominent catalyst in CPF bioactivation, is highly polymorphic. The objective of our study was to evaluate the role of CYP2B6*6, which contains both 516G>T and 785A>G polymorphisms, in CPF toxicity, as represented by the concentration of 3,5,6-trichloro-2-pyridinol (TCPy), among vegetable farmers in Central Java, Indonesia, where CPF has been commonly used. Methods: A cross-sectional study was conducted among 132 vegetable farmers. Individual socio-demographic and occupational characteristics, as determinants of TCPy levels, were obtained using a structured interviewer-administered questionnaire and subsequently used to estimate the cumulative exposure level (CEL). TCPy levels were detected with liquid chromatography-mass spectrometry. CYP2B6*6 gene polymorphisms were analyzed using a TaqMan® SNP Genotyping Assay and Sanger sequencing. Linear regression analysis was performed to analyze the association between TCPy, as a biomarker of CPF exposure, and its determinants. Results: The prevalence of CYP2B6*6 polymorphisms was 31% for *1/*1, 51% for *1/*6, and 18% for *6/*6. TCPy concentrations were higher among participants with CYP2B6*1/*1 than among those with *1/*6 or *6/*6 genotypes. CYP2B6*6 gene polymorphisms, smoking, CEL, body mass index, and spraying time were retained in the final linear regression model as determinants of TCPy. Conclusions: The results suggest that CYP2B6*6 gene polymorphisms may play an important role in influencing susceptibility to CPF exposure. CYP2B6*6 gene polymorphisms together with CEL, smoking habits, body mass index, and spraying time were the determinants of urinary TCPy concentrations, as a biomarker of CPF toxicity.

Protective Effects of Diallyl Sulfide against Thioacetamide-Induced Toxicity: A Possible Role of Cytochrome P450 2E1

  • Kim, Nam Hee;Lee, Sangkyu;Kang, Mi Jeong;Jeong, Hye Gwang;Kang, Wonku;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.149-154
    • /
    • 2014
  • Effects of diallyl sulfide (DAS) on thioacetamide-induced hepatotoxicity and immunotoxicity were investigated. When male Sprague-Dawley rats were treated orally with 100, 200 and 400 mg/kg of DAS in corn oil for three consecutive days, the activity of cytochrome P450 (CYP) 2E1-selective p-nitrophenol hydroxylase was dose-dependently suppressed. In addition, the activities of CYP 2B-selective benzyloxyresorufin O-debenzylase and pentoxyresorufin O-depentylase were significantly induced by the treatment with DAS. Western immunoblotting analyses also indicated the suppression of CYP 2E1 protein and/or the induction of CYP 2B protein by DAS. To investigate a possible role of metabolic activation by CYP enzymes in thioacetamide-induced hepatotoxicity, rats were pre-treated with 400 mg/kg of DAS for 3 days, followed by a single intraperitoneal treatment with 100 and 200 mg/kg of thioacetamide in saline for 24 hr. The activities of serum alanine aminotransferase and aspartate aminotransferase significantly elevated by thioacetamide were protected in DAS-pretreated animals. Likewise, the suppressed antibody response to sheep erythrocytes by thioacetamide was protected by DAS pretreatment in female BALB/c mice. Taken together, our present results indicated that thioacetamide might be activated to its toxic metabolite(s) by CYP 2E1, not by CYP 2B, in rats and mice.