• 제목/요약/키워드: CYP1A1 inhibitor

검색결과 51건 처리시간 0.023초

Changes in the Pharmacokinetics of Rosiglitazone, a CYP2C8 Substrate, When Co-Administered with Amlodipine in Rats

  • Kim, Seon-Hwa;Kim, Kyu-Bong;Um, So-Young;Oh, Yun-Nim;Chung, Myeon-Woo;Oh, Hye-Young;Choi, Ki-Hwan
    • Biomolecules & Therapeutics
    • /
    • 제17권3호
    • /
    • pp.299-304
    • /
    • 2009
  • Rosiglitazone maleate (RGM) is widely used for improving insulin resistance. RGM is a moderate inhibitor of cytochrome P450 2C8 (CYP2C8) and is also mainly metabolized by CYP2C8. The aim of this study was to determine whether the effect of RGM on CYP2C8 is altered by co-treatment with other drugs, and whether amlodipine camsylate (AC) changes the pharmacokinetics (PK) of RGM. Of the 11 drugs that are likely to be co-administered with RGM in diabetic patients, seven drugs lowered the $IC_{50}$ value of RGM on CYP2C8 by more than 80%. In vitro CYP2C8 inhibitory assays of RGM in combination with drugs of interest showed that the $IC_{50}$ of RGM was decreased by 98.9% by AC. In a pharmacokinetic study, Sprague-Dawley (SD) rats were orally administered 1 mg/kg of RGM following by single or 10-consecutive daily administrations of 1.5 mg/kg/day of AC. No significant changes in the pharmacokinetic parameters of RGM were observed after a single administration of AC, but the AUC and $C_{max}$ values of RGM were significantly reduced by 36% and 31%, respectively, by multiple administrations of AC. In conclusion, RGM was found to be affected by AC by in vitro CYP2C8 inhibition testing, and multiple dosing of AC appreciably changed the pharmacokinetics of RGM. These findings suggest that a drug interaction exists between AC and RGM.

The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

  • Kim, Mijie;Park, Yong Joo;Ahn, Huiyeon;Moon, Byeonghak;Chung, Kyu Hyuck;Oh, Seung Min
    • Environmental Analysis Health and Toxicology
    • /
    • 제31권
    • /
    • pp.10.1-10.8
    • /
    • 2016
  • Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and $17{\beta}$-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases ($3{\beta}$-HSD2 and $17{\beta}$-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and $100{\mu}g/mL$) showed a significant decrease in $17{\beta}$-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and $17{\beta}$-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and $17{\beta}$-HSD1, and lead to a decrease in $17{\beta}$-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer.

Characterization of Deoxypodophyllotoxin Metabolism in Rat Liver Microsomes

  • Lee, Sang-Kyu;Jun, In-Hye;Kang, Mi-Jeong;Jeon, Tae-Won;Kim, Ju-Hyun;Seo, Young-Min;Shin, Sil;Choi, Jae-Ho;Jeong, Hye-Gwang;Lee, Seung-Ho;Jeong, Tae-Cheon
    • Biomolecules & Therapeutics
    • /
    • 제16권3호
    • /
    • pp.190-196
    • /
    • 2008
  • Deoxypodophyllotoxin (DPT) is a medicinal herb product isolated from Anthriscus sylvestris. DPT possesses beneficial activities in regulating immediate-type allergic reaction and anti-inflammatory activity through the dual inhibition of cyclooxygenase-2 and 5-lipoxygenase. In the present study, the metabolism of DPT was further characterized in rat liver microsomes isolated from male Sprague Dawley rats. The metabolism of DPT was NADPH-dependent. In addition, when liver microsomes were incubated with SKF-525A, a well-known CYP inhibitor, in the presence of $\beta$-NADPH, the metabolism of DPT was significantly inhibited. Using enriched rat liver microsomes, the anticipated isoforms of cytochrome P450s (CYPs) in the metabolism of DPT were partially characterized. Phenobarbital-induced microsomes increased in the formation of metabolite M1. The metabolite M3 was only produced in the enriched microsomes isolated from dexamethasone-treated rats. The results indicated that the metabolism of DPT would be CYP-dependent and that CYP2B and CYP3A might be important in the metabolism of DPT in rats.

흰쥐에서 에피게로카테친의 장기투여가 베라파밀의 약물동태에 미치는 영향 (The Effect of Long-term Administration of Epigallocatechin on the Pharmacokinetics of Verapamil in Rats)

  • 윤재경;최준식
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권2호
    • /
    • pp.107-111
    • /
    • 2007
  • Epigallocatechin gallate (EGCC), a flavonoid, is the main component of green tea extracts. EGCG has been reported to be an inhibitor of P-glycoprotein (P-gp) and cytochrom P450 3A(CYP3A4). This study investigated the effect of long-term administration of EGCG on the pharmacokinetics of verapamil in rats. Pharmacokinetic parameters of verapamil were determined after oral administration of verapamil (9 mg/kg) in rats pretreated with EGCG (7.5 mg/hg) for 3 and 9 days. Compared to oral control group, the presence of EGCG significantly (p<0.01) increased the area under the plasma concentration-time curve (AUC) of verapamil by 102% (coad), 83.2% (3 days) and 52.3% (9 days), and the peak concentration $(C_{max})$ by 134% (coad), 120% (3 days) and 66.1% (9 days). The absolute bioavailability (A.B.%) of verapamil was significantly (p<0.01) higher by 8.4% (coad), 7.7% (3 days), 6.4% (9 days) compared to control (4.2%), and presence of EGCG was no significant change in the terminal half-life $(t_{1/2})$ and the time to reach the peak concentration $(T_{max})$ of verapamil. Our results indicate that EGCG significantly enhanced oral bioavailability of verapamil in rats, implying that presence of EGCG could be effective to inhibit the CYP3A4-mediated metabolism and P-gp efflux of verapamil in the intestine. Drug interactions should be considered in the clinical setting when verapamil is coadministrated with EGCG or EGCG-containing dietary.

Analysis of Genes Regulated by HSP90 Inhibitor Geldanamycin in Neurons

  • ;;권오유
    • 대한의생명과학회지
    • /
    • 제15권1호
    • /
    • pp.97-99
    • /
    • 2009
  • Geldanamycin is a benzoquinone ansamycin antibiotic that binds to cytosol HSP90 (Heat Shock Protein 90) and changes its biological function. HSP90 is involved in the intracellular important roles for the regulation of the cell cycle, cell growth, cell survival, apoptosis, angiogenesis and oncogenesis. To identify genes expressed during geldanamycin treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up-or down-regulated genes) which are geldanamycin differentially expressed in neurons. Granzyme B is the gene most significantly increased among 204 up-regulated genes (more than 2 fold over-expression) and Chemokine (C-C motif) ligand 20 is the gene most dramatically decreased among 491 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Cxc110, Cyp11a1, Gadd45a, Gja1, Gpx2, Ifua4, Inpp5e, Sox4, and Stip1 are involved stress-response gene, and Cryab, Dnaja1, Hspa1a, Hspa8, Hspca, Hspcb, Hspd1, Hspd1, and Hsph1 are strongly associated with protein folding. Cell cycle associated genes (Bc13, Brca2, Ccnf, Cdk2, Ddit3, Dusp6, E2f1, Illa, and Junb) and inflammatory response associated genes (Cc12, Cc120, Cxc12, Il23a, Nos2, Nppb, Tgfb1, Tlr2, and Tnt) are down-regulated more than 2 times by geldanamycin treatment. We found that geldanamycin is related to expression of many genes associated with stress response, protein folding, cell cycle, and inflammation by DNA microarray analysis. Further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by geldanamycin. The resulting data will give the one of the good clues for understanding of geldanamycin under molecular level in the neurons.

  • PDF

인후두역류질환 (Laryngopharyngeal Reflux Disease, LPRD)에서 Rabeprazole Sodium($Pariet^{\circledR}$)의 임상효과 (The clinical effects of rabeprazole sodium($Pariet^{\circledR}$) in the treatment of Layngopharyngeal Reflux)

  • 최홍식;최현승;김한수
    • 대한기관식도과학회지
    • /
    • 제9권1호
    • /
    • pp.60-66
    • /
    • 2003
  • Although there is a wide range of diseases caused by gastric acid reflux and the number of cases is on the rise, it is difficult for the laryngologist to make the correct diagnosis. The treatment for laryngopharyngeal reflux can be grouped into 3 categories - changes in lifestyle, medication, and surgery. The medication used to treat laryngopharyngeal reflux are prokinetic agents and acid supressive agents such as antacids, H2 blockers, and PPIs(Proton pump inhibitor). Rabeprazole sodium($Pariet^{\circledR}$) is a newly developed agent belonging to the PPI group, but in contrast with the existing drugs such as omeprazole, lansoprazole, pantoprazole, has a low dependency on CYP2C19 during the metabolic cycle. Thus, it is known to have a quick but fixed antiacid effect and less individual differences. We analyzed 2166 patients from 32 hospitals who were prescribed $Pariet^{\circledR}$ from May, 2001 to April, 2002. The patients were divided into 4 groups according to the duration of treatment - Group 1: 1-14 days, Group 2: 15-28 days, group 3: 29-56 days, Group 4: more than 56 days. The cases were then analyzed for improvement of 8 symptoms(heart bum, regurgitation, chronic cough, hoarseness, globus sensation, chronic throat clearing, sore throat, and dysphagia), improvement on laryngoscope, usefulness to the doctor, and complication development. Of the total of 2116 patients, 1627(75.1%) cases showed at least 50% improvement of symptoms and the amount of improvement increased according to the duration of medical treatment. Most of the patients showed objective improvement on the laryngoscope, with 32.9% showing significant improvement and 38.7% showing moderate improvement. 37.6% of the doctors questioned replied that $Pariet^{\circledR}$ was very useful and 50.3% said it was useful, showing that most were satisfied with the treatment results. The complications known to develop after taking PPI are headache, nausea, diarrhea, abdominal pain, constipation, dizziness, fatigue, and of these, only a small percentage of the patients complained of mild headache. $Pariet^{\circledR}$ has shown to be a relatively safe and effective drug for the treatment of laryngopharyngeal reflux.

  • PDF

Discovery of a Novel 2,6-Difunctionalized 2H-Benzopyran Inhibitors Toward Sphingosylphosphorylcholine Synthetic Pathway as New Anti-inflammatory Target

  • Lee, Gee-Hyung;Lee, Seong Jin;Jeong, Dae Young;Kim, Ha-Young;Lee, Doohyun;Lee, Taeho;Hwang, Jong-Yeon;Park, Woo Kyu;Kong, Jae-Yang;Cho, Heeyeong;Gong, Young-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2385-2390
    • /
    • 2014
  • Novel 2,6-difuctionalized 2H-benzopyrans were synthesized and evaluated for a sphingosylphosphorylcholine(SPC) inhibitor. The synthetic 2H-benzopyrans 1c and 3a showed high potency in SPC-induced cell proliferation assay ($IC_{50}$ < 20 nM). Neither hERG $K^+$ channel binding (> $10{\mu}M$) nor CYP inhibitions (> $10{\mu}M$) were observed. Also, the simple structure-activity relationship (SAR) results were obtained from analysis of 2H-benzopyran derivatives 1-3 and the anti-SPC effect of 2H-benzopyran 1c was confirmed by a HUVEC tube formation assay.

Particulate Matter-Induced Aryl Hydrocarbon Receptor Regulates Autophagy in Keratinocytes

  • Jang, Hye sung;Lee, Ji eun;Myung, Cheol hwan;Park, Jong il;Jo, Chan song;Hwang, Jae Sung
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.570-576
    • /
    • 2019
  • Particulate matter (PM), which refers to the mixture of particles present in the air, can have harmful effects. Damage to cells by PM, including disruption of organelles and proteins, can trigger autophagy, and the relationship between autophagy and PM has been well studied. However, the cellular regulators of PM-induced autophagy have not been well characterized, especially in keratinocytes. The Aryl Hydrocarbon Receptor (AhR) is expressed in the epidermis and is activated by PM. In this study, we investigated the role of the AhR in PM-induced autophagy in HaCaT cells. Our results showed that PM led to AhR activation in keratinocytes. Activation of the AhR-target gene CYP1A1 by PM was reduced by co-treatment with ${\alpha}$-naphthoflavone (${\alpha}-NF$), an AhR inhibitor. We also evaluated activation of the autophagy pathway in PM-treated keratinocytes. In HaCaT cells, treatment with PM treatment led to the induction of microtubules-associated proteins light chain 3 (LC3) and p62/SQSTM1, which are essential components of the autophagy pathway. To study the role of the AhR in mediating PM-induced autophagy, we treated cells with ${\alpha}-NF$ or used an siRNA against AhR. Expression of LC3-II induced by PM was decreased in a dose dependent manner by ${\alpha}-NF$. Furthermore, knockdown of AhR with siAhR diminished PM-induced expression of LC3-II and p62. Together, these results suggest that inhibition of the AhR decreases PM-induced autophagy. We confirmed these results using the autophagy-inhibitors BAF and 3-MA. Taken together, our results indicate that exposure to PM induces autophagy via the AhR in HaCaT keratinocytes.

Biological Activity and Inhibition of Non-Enzymatic Glycation by Methanolic Extract of Rosa davurica Pall. Roots

  • Hu, Weicheng;Han, Woong;Jiang, Yunyao;Wang, Myeong-Hyeon;Lee, Young-Mee
    • Preventive Nutrition and Food Science
    • /
    • 제16권3호
    • /
    • pp.242-247
    • /
    • 2011
  • The methanolic extract of Rosa davurica Pall. roots exhibited strong antioxidant activity in a 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging assay and was found to be a dose-dependent inhibitor of non-enzymatic formation of advanced glycation end products (AGEs), which are relevant to diabetes complications. HPLC-diode array detector (DAD) analysis of the R. davurica Pall. root extract led to the identification of four compounds: hydrocaffeic acid, catechin, epicatechin, and ellagic acid. Catechin was present in the largest amount and exhibited high antiglycation activity. A CYP3A4 assay was used to investigate potential interactions between drugs and the extract, and results suggest that the R. davurica Pall. root extract had moderate potential for interfering with drug metabolism. The R. davurica Pall. extract did not display anti-inflammatory activity on the level of that for tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) in a lipopolysaccharide (LPS)-stimulated macrophage assay; however, the extract did exhibit low to moderate immunostimulatory activity in a pro-inflammatory macrophage assay. Therefore, we conclude that R. davurica Pall. root is a promising anti-AGE agent with low to moderate risks of associated inflammation or drug interaction.

Inhibitory Role of TRIP-Br1/XIAP in Necroptosis under Nutrient/Serum Starvation

  • Sandag, Zolzaya;Jung, Samil;Quynh, Nguyen Thi Ngoc;Myagmarjav, Davaajargal;Anh, Nguyen Hai;Le, Dan-Diem Thi;Lee, Beom Suk;Mongre, Raj Kumar;Jo, Taeyeon;Lee, MyeongSok
    • Molecules and Cells
    • /
    • 제43권3호
    • /
    • pp.236-250
    • /
    • 2020
  • Currently, many available anti-cancer therapies are targeting apoptosis. However, many cancer cells have acquired resistance to apoptosis. To overcome this problem, simultaneous induction of other types of programmed cell death in addition to apoptosis of cancer cells might be an attractive strategy. For this purpose, we initially investigated the inhibitory role of TRIP-Br1/XIAP in necroptosis, a regulated form of necrosis, under nutrient/serum starvation. Our data showed that necroptosis was significantly induced in all tested 9 different types of cancer cell lines in response to prolonged serum starvation. Among them, necroptosis was induced at a relatively lower level in MCF-7 breast cancer line that was highly resistant to apoptosis than that in other cancer cell lines. Interestingly, TRIP-Br1 oncogenic protein level was found to be very high in this cell line. Up-regulated TRIP-Br1 suppressed necroptosis by repressing reactive oxygen species generation. Such suppression of necroptosis was greatly enhanced by XIAP, a potent inhibitor of apoptosis. Our data also showed that TRIP-Br1 increased XIAP phosphorylation at serine87, an active form of XIAP. Our mitochondrial fractionation data revealed that TRIP-Br1 protein level was greatly increased in the mitochondria upon serum starvation. It suppressed the export of CypD, a vital regulator in mitochondria-mediated necroptosis, from mitochondria to cytosol. TRIP-Br1 also suppressed shikonin-mediated necroptosis, but not TNF-α-mediated necroptosis, implying possible presence of another signaling pathway in necroptosis. Taken together, our results suggest that TRIP-Br1/XIAP can function as onco-proteins by suppressing necroptosis of cancer cells under nutrient/serum starvation.