DOI QR코드

DOI QR Code

The Effect of Long-term Administration of Epigallocatechin on the Pharmacokinetics of Verapamil in Rats

흰쥐에서 에피게로카테친의 장기투여가 베라파밀의 약물동태에 미치는 영향

  • Published : 2007.04.21

Abstract

Epigallocatechin gallate (EGCC), a flavonoid, is the main component of green tea extracts. EGCG has been reported to be an inhibitor of P-glycoprotein (P-gp) and cytochrom P450 3A(CYP3A4). This study investigated the effect of long-term administration of EGCG on the pharmacokinetics of verapamil in rats. Pharmacokinetic parameters of verapamil were determined after oral administration of verapamil (9 mg/kg) in rats pretreated with EGCG (7.5 mg/hg) for 3 and 9 days. Compared to oral control group, the presence of EGCG significantly (p<0.01) increased the area under the plasma concentration-time curve (AUC) of verapamil by 102% (coad), 83.2% (3 days) and 52.3% (9 days), and the peak concentration $(C_{max})$ by 134% (coad), 120% (3 days) and 66.1% (9 days). The absolute bioavailability (A.B.%) of verapamil was significantly (p<0.01) higher by 8.4% (coad), 7.7% (3 days), 6.4% (9 days) compared to control (4.2%), and presence of EGCG was no significant change in the terminal half-life $(t_{1/2})$ and the time to reach the peak concentration $(T_{max})$ of verapamil. Our results indicate that EGCG significantly enhanced oral bioavailability of verapamil in rats, implying that presence of EGCG could be effective to inhibit the CYP3A4-mediated metabolism and P-gp efflux of verapamil in the intestine. Drug interactions should be considered in the clinical setting when verapamil is coadministrated with EGCG or EGCG-containing dietary.

Keywords

References

  1. A. Fleckenstein, Specific pharmacology of calcium in myocardium. cardiac pacemakers, and vascular smooth muscle, Annual Review of Pharmacology and Toxicology, 17, 149-166 (1977) https://doi.org/10.1146/annurev.pa.17.040177.001053
  2. D. M. Krikler and R. A. J. Spurrel, verapamil in the treatment of paroxysmal supraventricular tachycardias, Postgraduate Medicine, 50, 447-453 (1974) https://doi.org/10.1136/pgmj.50.585.447
  3. B. A. Gould, S. Mann, H. Kieso, V. Bala Subramanian and E. B. Raftery, The 24-hour ambulatory blood pressure profile with verapamil, Circulation, 65, 22-27 (1982) https://doi.org/10.1161/01.CIR.65.1.22
  4. G. R. J. Lewis, K. D. Morley, B. M. Lewis and P. J. Bones, The treatment of hypertension with verapamil, N.Z. Medical Journal, 87, 351-354 (1978)
  5. M. Schomerus, B. Spiegelhaider, B. Stieren and M. Eichelbaum, Physiologic disposition of verapamil in man, Cardiovascular Research, 10, 605-612 (1976) https://doi.org/10.1093/cvr/10.5.605
  6. G. Neugebauer, Comparative cardiovascular actions of verapamil and its major metabolites in the anesthetized dog, Cardiovascular Research, 12, 247-254 (1978) https://doi.org/10.1093/cvr/12.4.247
  7. M. Eichelbaum. E. G. Remberg, M. Schomerus and H. J. Dengler, The metabolism of D,L$(^{14}C)$ verapamil in man, Drug Metabolism and Disposition, 7, 145-148 (1979)
  8. M. Eichelbaum, G. Mikus and B. Vogelgesang, Pharmacokinetics of (+)-,(-)- and $({\pm})$-verapamil after intravenous administration, British Journal of Clinical Pharmacology, 17, 453-458 (1984) https://doi.org/10.1111/j.1365-2125.1984.tb02371.x
  9. B. G. Woodcock, I. Rietbrock, H. Voehringer and N. Rietbrock, Verapamil disposition in liver disease and intensive-case patients: kinetics, clearance, and apparent blood flow relationships, Clinical Pharmacology and Therapeutics, 29, 27-34 (1981) https://doi.org/10.1038/clpt.1981.5
  10. M. Eichelbaum, M. Albrecht, K. Kliems, K. Schafe and A. Somogyi, Influence of mesocaval shunt surgery on verapamil kinetics, bioavailability and response, British Journal of Clinical Pharmacology, 10, 527-529 (1980) https://doi.org/10.1111/j.1365-2125.1980.tb01800.x
  11. J. B. Schwartz, D. R. Abernethy, A. A. Taylor and J. R. Mitchel, An investigation of the cause of accumulation of verapamil during regular dosing in patients, British J Clinical Pharmacology, 19, 512-516 (1985) https://doi.org/10.1111/j.1365-2125.1985.tb02678.x
  12. S. B. Freedman, D. R. Richmond, J. J. Ashley and D. T. Kelly, Verapamil kinetics in normal subjects and patients with coronary artery spasm., Clinical Pharmacology and Therapeutics, 30, 644-652 (1981) https://doi.org/10.1038/clpt.1981.216
  13. M. Eichelbaum, P. Birkel, E. Grube, U. Gutgemann and A. Somogyi, Effects of verapamil on PR intervals in relation to verapamil plasma levels following single i.v. and oral administration and during chronic treatment, Klinische Wochenschrift, 58, 919-925 (1980) https://doi.org/10.1007/BF01477049
  14. G. Mikus, Die Anwendung eines mit stabilen isotopen markierten Arzneimittels zur simultanen Bestimmung der relativen biologischem Verfugbarkeit einer verapamil retard, Thesis, University of Bonn., (1985)
  15. J. A. Dominic, D. W. A. Bourne, T. G Tan, E. B. Kirsten and R. G. McAllister, The pharmacology of verapamil. III. Pharmacokinetics in normal subjects after intravenous drug administration, J. Cardiovascular Pharmacology, 3, 25-38 (1981) https://doi.org/10.1097/00005344-198101000-00003
  16. R. G. McAllister, Clinical pharmacology of slow channel blocking agents, Progress in Cardiovascular Diseases, 25, 83-102 (1982) https://doi.org/10.1016/0033-0620(82)90022-6
  17. F. X. McGowan, M. J. Reiter, E. L. C. Pritchett and D. G. Shand, Verapamil plasma binding: Relationship to $alpha_1$ acid glycoprotein and drug efficacy, Clinical Pharmacology and Therapeutics, 33, 485-490 (1983) https://doi.org/10.1038/clpt.1983.66
  18. D. L. Keefe, Y. G. Yee and R. E. Kates, Verapamil protein binding in patients and in normal subjects, Clin. Pharm. and Therapeutics, 29, 21-26 (1981) https://doi.org/10.1038/clpt.1981.4
  19. C. M. Loi, D. E. Rollins, G. E. Dukes and M. A. Peat, Effect of cimetidine on verapamil disposition, Clin. Pharm. and Therapeutics, 37, 654-657 (1985) https://doi.org/10.1038/clpt.1985.106
  20. L. M. Johnson, S. M. Lankford and S. A. Bai, The influence of cimetidine on the pharmacokinetics of the enantiomers of verapamil in the dog during multiple oral dosing, J. Vet. Pharmacal. Ther., 18, 117-123 (1995) https://doi.org/10.1111/j.1365-2885.1995.tb00564.x
  21. P. C. Ho, K. Ghose, D. Saville and S. Wanwimolruk, Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers, Eur. J Clin. Pharmacol., 56, 693-698 (2000) https://doi.org/10.1007/s002280000189
  22. U. Fuhr, H. Muller-Peltzer, R. Kern and S. Harder, Effect of grapefruit juice and smoking on verapamil concentration steady state, Eur. J. Clin. Pharmacol., 58, 45-53 (2002) https://doi.org/10.1007/s00228-002-0436-7
  23. R. Sandstrom, A. Karlsson, L. Knutson and H. Lennemas, Jejunal absorption and metabolism of R/S-verapamil in humans, Pharm. Res., 15, 856-862 (1998) https://doi.org/10.1023/A:1011916329863
  24. V. J. Wacher, C. Y. Wu and L. Z. Benet, Overlapping substrate specificities and tissue distribution of cytochrome p450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy, Mol. Carcinog., 13, 129-134 (1995) https://doi.org/10.1002/mc.2940130302
  25. D. C. Chu and L. R. Juneja, Chemistry and Applications of Green Tea, in: T. Yamamoto, L.R. Juneja, D.C. Chu and M. Kim, (Eds.), CRC Press, New York, pp. 1322 (1997)
  26. J. V. Higdon and B. Frei, Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions, Crit. Rev. Food Sci. Nutr., 43, 89-143 (2003) https://doi.org/10.1080/10408690390826464
  27. Y. Kuroda and Y. Hara, Antimutagenic and anticarcinogenic activity of tea polyphenols, Mutat. Res., 436, 69-97 (1999) https://doi.org/10.1016/S1383-5742(98)00019-2
  28. S. Muto, K. Fujita, Y. Yamazaki and T. Kamataki, Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450, Mutat. Res., 479, 197-206 (2001) https://doi.org/10.1016/S0027-5107(01)00204-4
  29. J. Jodoin, M. Demeule and R. Beliveau, Inhibition of the mutldrug resistance P-glycoprotein activity by green tea polyphenols, Biochim. Biophys. Acta, 1542, 149-159 (2002) https://doi.org/10.1016/S0167-4889(01)00175-6
  30. J. Hong, J. D. Lambert, S. H. Lee, P. J. Sinko and C. S. Yang, Involvement of multidrug resistance-associated proteins in regulating cellular levels of (- )-epigallocatechin-3-gallate and its methyl metabolites, Biochem. Biophys. Res. Commun., 310, 222-227 (2003) https://doi.org/10.1016/j.bbrc.2003.09.007
  31. S. Kitagawa, T. Nabekura and S. Kamiyama, Inhibition of P-glycoprotein function by tea catechins in KB-C2 cells, J. Pharm. Pharmacol., 56, 1001-1005 (2004) https://doi.org/10.1211/0022357044003
  32. 식품의약품안전청, 국립독성연구소, 생물학적동등성시험 표준지침. 식품의약품안전청, pp. 142-146 (2003)
  33. M. L. Rocci and W. J. Jusko, LAGRAN program for area and moments in pharmacokinetic analysis, Computer Programs in Biomedicine, 16, 203-209 (1983) https://doi.org/10.1016/0010-468X(83)90082-X
  34. H. J. Kim and J. S. Choi, Effects of naringin on the pharmacokinetics of verapamil and one of its metabolites, norverapamil, in rabbits, Biopharm. Drug Dispos., 26, 295-300 (2005) https://doi.org/10.1002/bdd.459
  35. J. S. Choi and H. K. Han, The effect of quercetin on the pharmacokinetics of verapamil and its major metabolite, norverapamil, in rabbits. J. Pharm. Pharmacol., 56, 1537-1542 (2004) https://doi.org/10.1211/0022357044814