• 제목/요약/키워드: CXI

검색결과 4건 처리시간 0.021초

PAL-XFEL 빔라인 허치 구조물 개발 (The Development of Beamline Hutch Structures at PAL-XFEL)

  • 김승남;김명진;김성한;김영찬;신호철;김지화;김경숙;김광우;엄인태
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.567-577
    • /
    • 2016
  • The hutches which are installed in the beamline are largely classified into two, i.e XPP (X-ray pump probe) and CXI (Coherent X-ray image). Laser room is installed on the hutch and provides laser to XPP and CXI simultaneously. And two hutches have heavy crane to install some optics equipments. Safety and reliability of hutch structures should be taken into account for the precise operating of the laser facilities, so vibration analysis is essential to do this. The main purpose of vibration analysis is to install hutch structures with large stiffness. We have changed materials specification several times to install hutch structures having strong stiffness. Now hutch structures were installed and checked vibration status at laser room and XPP hutch. The results of laser table and robot arm satisfy vibration criteria. This paper explains about the design and vibration analysis of hutch structures.

Coherent Diffraction Imaging at PAL-XFEL

  • Kim, Sangsoo;Nam, Kihyun;Park, Jaehyun;Kim, Kwangoo;Kim, Bongsoo;Ko, Insoo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.85.2-85.2
    • /
    • 2016
  • With the advent of ultra-short high-intense XFEL (X-ray Free Electron Laser), time-resolved dynamics has become of great importance in exploring femtosecond real-world phenomena of nanoscience and biology. These include studying the response of materials to femtosecond laser excitation and investigating the interaction of XFEL itself with condensed matter. A variety of dynamic phenomena have been investigated such as radiation damage, ultrafast melting process, non-equilibrium phase transitions caused by orbital-lattice-spin couplings. As far as bulk materials are concerned, the sample size has no effect on the following dynamic process. As a result, imaging information is not required by and large. If the sample size is of tens of nanometers, however, sample starts to experience quantum confinement effect which, in turn, affects the following dynamic process. Therefore, to understand the fundamental dynamic phenomena in nano-science, time-resolved imaging information is essential. In this talk, we will briefly introduce scientific highlights achieved in XFEL-based dynamics. In case of bio-imaging, recent scientific topics will be mentioned as well. Finally, we will aim to present feasible topics in ultrafast time-resolved imaging and to discuss the future plan of CXI beamline at PAL-XFEL.

  • PDF

N-아세틸글루코사민 생산을 위한 코리네박테리움 글루타미컴의 대사공학 (Metabolic Engineering of Corynebacterium glutamicum for N-acetylglucosamine Production)

  • 김진연;김부연;문경호;이진호
    • 한국미생물·생명공학회지
    • /
    • 제47권1호
    • /
    • pp.78-86
    • /
    • 2019
  • 대사공학을 이용하여 N-아세틸글루코사민(GlcNAc)을 생산하는 재조합 Corynebacterium glutamicum을 개발하였다. 먼저 GlcNAc를 생산하는 기반균주를 제작하기 위하여, N-acetylglucosamine-6-phosphate deacetylase와 glucosamine-6-phosphate deaminase를 암호화하는 nagAB와 N-acetylmannosamine-6-phosphate epimerase를 암호화하는 nanE를 C. glutamicum ATCC 13032에서 순차적으로 결손하여, 최종적으로 KG208 균주를 제작하였다. 또한, glucosamine-6-phosphate synthase를 암호화하는 C. glutamicum 유래의 glmS와 glucosamine-6-phosphate N-acetyltransferase를 암호화하는 Saccharomyces cerevisiae 유래의 gna1을 각각 여러 발현벡터에 클로닝하였다. 여러 발현 조합의 플라스미드들 중에서 pCXI40-glmS와 pCEI40-gna1을 함유한 제조합균주 KG440은 삼각플라스크 발효에서 1.77 g/l의 GlcNAc와 0.63 g/l의 글루코사민을 생산하였다.

노천굴착에서 발파진동의 크기를 감량 시키기 위한 정밀파실험식 (On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works.)

  • 허진
    • 화약ㆍ발파
    • /
    • 제9권1호
    • /
    • pp.3-13
    • /
    • 1991
  • 발파에 의한 지반진동의 크기는 화약류의 종류에 따른 화약의 특성, 장약량, 기폭방법, 전새의 상태와 화약의 장전밀도, 자유면의 수, 폭원과 측간의 거리 및 지질조건 등에 따라 다르지만 지질 및 발파조건이 동일한 경우 특히 측점으로부터 발파지점 까지의 거리와 지발당 최대장약량 (W)간에 깊은 함수관계가 있음이 밝혀졌다. 즉 발파진동식은 $V=K{\cdot}(\frac{D}{W^b})^n{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (1) 여기서 V ; 진동속도, cm /sec D ; 폭원으로부터의 거리, m W ; 지발 장약량, kg K ; 발파진동 상수 b ; 장약지수 R ; 감쇠지수 이 발파진동식에서 b=1/2인 경우 즉 $D{\;}/{\;}\sqrt{W}$를 자승근 환산거리(Root scaled distance), $b=\frac{1}{3}$인 경우 즉 $D{\;}/{\;}\sqrt[3]{W}$를 입방근환산거리(Cube root scaled distance)라 한다. 이 장약 및 감쇠지수와 발파진동 상수를 구하기 위하여 임의거리와 장약량에 대한 진동치를 측정, 중회귀분석(Multiple regressional analysis)에 의해 일반식을 유도하고 Root scaling과 Cube root scaling에 대한 회귀선(regression line)을 구하여 회귀선에 대한 적합도가 높은 쪽을 택하여 비교, 검토하였다. 위 (1)식의 양변에 log를 취하여 linear form(직선형)으로 바꾸어 쓰면 (2)式과 같다. log V=A+BlogD+ClogW ----- (2) 여기서, A=log K B=-n C=bn (2)식은 다시 (3)식으로 표시할 수 있다. $Yi=A+BXi_{1}+CXi_{2}+{\varepsilon}i{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$(3) 여기서, $Xi_{1},{\;}Xi_{2} ;(두 독립변수 logD, logW의 i번째 측정치. Yi ; ($Xi_1,{\;}Xi_2$)에 대한 logV의 측정치 ${\varepsilon}i$ ; error term 이다. (3)식에서 n개의 자료를 (2)식의 회귀평면으로 대표시키기 위해서는 $S={\sum}^n_{i=1}\{Yi-(A+BXi_{1}+CXi_{2})\}\^2$을 최소로하는 A, B, C 값을 구하면 된다. 이 방법을 최소자승법이 라 하며 S를 최소로 하는 A, B, C의 값은 (4)식으로 표시한다. $\frac{{\partial}S}{{\partial}A}=0,{\;}\frac{{\partial}S}{{\partial}B}=0,{\;}\frac{{\partial}S}{{\partial}C}=0{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (4) 위식을 Matrix form으로 간단히 나타내면 식(5)와 같다. [equation omitted] (5) 자료가 많아 계산과정이 복잡해져서 본실험의 정자료들은 전산기를 사용하여 처리하였다. root scaling과 Cube root scaling의 경우 각각 $logV=A+B(logD-\frac{1}{2}W){\;}logV=A+B(logD-\frac{1}{3}W){\;}\}{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (6) 으로 (2)식의 특별한 형태이며 log-log 좌표에서 직선으로 표시되고 이때 A는 절편, B는 기울기를 나타낸다. $\bullet$ 측정치의 검토 본 자료의 특성을 비교, 검토하기 위하여 지금까지 발표된 국내의 몇몇 자료를 보면 다음과 같다. 물론, 장약량, 폭원으로 부터의 거리등이 상이하지만 대체적인 경향성을 추정하는데 참고할수 있을 것이다. 금반 총실측자료는 총 88개이지만 환산거리(5.D)와 진동속도의 크기와의 관계에서 차이를 보이고 있어 편선상 폭원과 측점지점간의 거리에 따라 l00m말만인 A지역과 l00m이상인B지역으로 구분하였다. 한편 A지역의 자료 56개중, 상하로 편차가 큰 19개를 제외한 37개자료와 B지역의 29개중 2개를 낙외한 27개(88개 자료중 거리표시가 안된 12월 1일의 자료3개는 원래부터 제외)의 자료를 computer로 처리하여 얻은 발파진동식은 다음과 같다. $V=41(D{\;}/{\;}\sqrt[3]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (7) (-100m)(R=0.69) $V=124(D{\;}/{\;}\sqrt[3]{W})^{-1.66){\;}{\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots}$ (8) (+100m)(R=0.782) 식(7) 및 (8)에서 R은 구한 직선식의 적합도를 나타내는 상관계수로 R=1인때는 모든 측정자료가 하나의 직선상에 표시됨을 의미하며 그 값이 낮을수록 자료가 분산됨을 뜻한다. 본 보고에서는 상관계수가 자승근거리때 보다는 입방근일때가 더 높기 때문에 발파진동식을 입방근($D{\;}/{\;}\sqrt[3]{W}$)으로 표시하였다. 특히 A지역에서는 R=0.69인데 비하여 폭원과 측점지점간의 거리가 l00m 이상으로 A지역보다 멀리 떨어진 B지역에서는 R=0.782로 비교적 높은 값을 보이는 것은 진동성분중 고주파성분의 상당량이 감쇠를 당하기 때문으로 생각된다.

  • PDF