• Title/Summary/Keyword: CVD growth

Search Result 374, Processing Time 0.024 seconds

Deposition of Epitaxial Silicon by Hot-Wall Chemical Vapor Deposition (CVD) Technique and its Thermodynamic Analysis

  • Koh, Wookhyun;Yoon, Deoksun;Pa, ChinHo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • Epitaxial Si layers were deposited on n- or p-type Si(100) substrates by hot-wall chemical vapor deposition (CVD) technique using the {{{{ {SiH }_{ 2} {Cl }_{2 } - {H }_{ 2} }}}}chemistry. Thermodynamic calculations if the Si-H-Cl system were carried out to predict the window of actual Si deposition procedd and to investigate the effects of process variables(i.e., the deposition temperature, the reactor pressure, and the source gas molar ratios) on the growth of epitaxial layers. The calculated optimum process conditions were applied to the actual growth runs, and the results were in good agreement with the calculation. The expermentally determined optimum process conditions were found to be the deposition temperature between 900 and 9$25^{\circ}C$, the reactor pressure between 2 and 5 Torr, and source gad molar ration({{{{ {H }_{2 }/ {SiH }_{ 2} {Cl }_{2 } }}}}) between 30 and 70, achieving high-quality epitaxial layers.

  • PDF

Effect of Ammonia Gas on Growth of Chemically Vapor-Deposited Carbon Nanotubes (화학기상증착법에 의한 탄소나노튜브의 성장에 미치는 암모니아 가스의 영향)

  • Lee, Dong-Gu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.418-423
    • /
    • 2010
  • Carbon nanotubes (CNTs) were synthesized by Fe-catalytic chemical vapor deposition (CVD) method about $800^{\circ}C$. The influence of process parameters such as pretreatment conditions, gas flow ratio, processing time, etc on the growth of CNTs was investigated by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Ammonia was added to acetylene source gas before and during the CNT growth. Different types of CNTs formed depending upon the processing condition. It was found that ammonia prevented amorphous carbons from adsorbing to the outer wall of CNT, resulting in purification of CNTs during CNT growth.

Water - Assisted Efficient Growth of Multi-walled Carbon Nanotubes by Thermal Chemical Vapor Deposition

  • Choi, In-Sung;Jeon, Hong-Jun;Kim, Young-Rae;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.418-418
    • /
    • 2009
  • Vertically aligned arrays of multi-walled carbon nanotube (MWCNT) on layered Si substrates have been synthesized by water-assisted thermal chemical vapor deposition (CVD). We studied changes in growth by parameters of growth temperature, growth time, rates of gas and annealing time of catalyst. Also, We grew CNTs by adding a little amount of water vapor to enhance the growth of CNTs. $H_2$, Ar, and $C_2H_2$ were used as carrier gas and feedstock, respectively. Before growth, Fe served as catalyst, underneath which AI were coated as an underlayer and a diffusion barrier, respectively, on the Si substrate. The water vapor had a greater effect on the growth of CNTs on a smaller thickness of catalyst. When the water vapor was introduced, the growth of CNTs was enhanced than without water. CNTs grew 1.29 mm for 10 min long by adding the water vapor, while CNTs were 0.73 mm long without water vapor for the same period of time. CNTs grew up to 1.97 mm for 30 min prior to growth termination under adding water vapor. As-grown CNTs were characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy.

  • PDF

A Study on the Flow Characteristics over the Rotating Susceptor in CVD Reactor (CVD 반응로 내부 회전 원판 주위의 유동 특성 연구)

  • Cha, Kwan;Kim, Youn-J.;Boo, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.213-218
    • /
    • 2001
  • The characteristics of the fluid flow and mass transfer in a vertical atmospheric pressure chemical vapor deposition (APCVD) are numerically studied. In order to get the optimal process parameters for the uniformity of deposition on a substrate, Navier-Stokes and energy equations have been solved for the pressure, mass-flow rate and temperature distribution in a CVD reactor. Results show that the thermal boundary condition at the reactor wall has an important effect in the formation of buoyancy-driven secondary cell when radiation effect is considered. Results also show that reduction of the buoyancy effect on the heated reactor improves the uniformity of deposition.

  • PDF

The effect of hydrogen flow rate on defects and thickness uniformity in graphene (수소량에 따른 그라핀의 두께와 결함 변화)

  • An, Hyo-Sub;Kim, Eun-Ho;Jang, Hyun-Chul;Cho, Won-Ju;Lee, Wan-Kyu;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.262-262
    • /
    • 2010
  • To investigate the effect of the amount of hydrogen on CVD grown-graphene, the flow rate of hydrogen was changed, while other process parameters were kept constant during CVD synthesis. Substrate which consists of 300nm-nickel/$SiO_2$/Si substrate, and methane gas mixed with hydrogen and argon were used for CVD growth. Graphene was synthesized at $950^{\circ}C$. The thickness and the defect of graphene were analyzed using raman spectroscopy. The synthesized graphene shows non-uniform and more defective below a certain amount of hydrogen.

  • PDF

Erosion of Free Standing CVD Diamond Film (다이아몬드 후막의 Erosion 특성)

  • Kim, Jong-Hoon;Lim, Dae-Soon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.67-74
    • /
    • 1998
  • Two kinds of polished and unpolished freestanding films prepared by DC plasma CVD method were impacted by SiC particles to understand erosion mechanism. Erosion damage caused by solid impact was characterized by surface profilometer, scanning electron microscopy and Raman spectroscopy. Gradually decrease of surface roughness and sharp reduction of crystallinity for unpolished CVD films were observed with increasing erosion time. It was found that smaller grains of the diamond were removed in early stage of erosion process and larger grains were eroded with further impingement. By introduction of re-growth method on polished diamond, further understanding of erosion mechanism was achieved. Most of the surface fractures were initiated at the grain boundary.

  • PDF

Growth of SiC Nanorod Using Tetramethylsilane (테트라메틸사일렌을 이용한 탄화규소 나노로드의 성장)

  • Rho, Dae-Ho;Kim, Jae-Soo;Byun, Dong-Jin;Yang, Jae-Woong;Kim, Na-Ri
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.404-408
    • /
    • 2003
  • SiC nanorods have been grown on Si (100) substrate directly. Tetramethylsilane and Ni were used for SiC nanorod growth. After 3minute, SiC nanorod had grown by CVD. Growth regions ware divided by two regions with diameter. The First region consisted of thin SiC nanorods having below 10 nm diameter, but second region's diameter was 10∼50 nm. This appearance shows by reduction of growth rate. The effect of temperature and growth time was investigated by scanning electron microscopy. Growth temperature and time affected nanorod's diameter and morphology. With increasing growth time, nanorod's diameter increased because of the deactivation effect. But growth temperatures affected little. By TEM characterization, grown SiC nanorods consisted of the polycrystalline grain.

Growth characteristics of 4H-SiC homoepitaxial layers grown by thermal CVD

  • Jang, Seong-Joo;Jeong, Moon-Taeg;Seol, Woon-Hag;Park, Ju-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.303-308
    • /
    • 1999
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides(SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single-crystalline 4H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 4H-SiC homoepitaxial layers using a SiC-uncoated atmospheric pressure chamber and carried out using off-oriented substrates prepared by a modified Lely method. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, Raman spectroscopy, photoluninescence(PL), scanning electron microscopy(SEM) and other techniques were utilized. The best quality of 4H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_{3}H_{8}\;0.2\;sccm\;&\;SiH_{4}\;0.3\;sccm$. The growth rate of epilayers was about $1.0\mu\textrm{m}/h$ in the above growth condition.

  • PDF

Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD (마이크로웨이브 플라즈마 CVD에 의한 나노결정질 다이아몬드 박막 성장 시 DC 바이어스 효과)

  • Kim, In-Sup;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • The effect of DC bias on the growth of nanocrystalline diamond films on silicon substrate by microwave plasma chemical vapor deposition has been studied varying the substrate temperature (400, 500, 600, and $700^{\circ}C$), deposition time (0.5, 1, and 2h), and bias voltage (-50, -100, -150, and -200 V) at the microwave power of 1.2 kW, working pressure of 110 torr, and gas ratio of Ar/1%$CH_4$. In the case of low negative bias voltages (-50 and -100 V), the diamond particles were observed to grow to thin film slower than the case without bias. Applying the moderate DC bias is believed to induce the bombardment of energetic carbon and argon ions on the substrate to result in etching the surfaces of growing diamond particles or film. In the case of higher negative voltages (-150 and -200 V), the growth rate of diamond film increased with the increasing DC bias. Applying the higher DC bias increased the number of nucleation sites, and, subsequently, enhanced the film growth rate. Under the -150 V bias, the height (h) of diamond films exhibited an $h=k{\sqrt{t}}$ relationship with deposition time (t), where the growth rate constant (k) showed an Arrhenius relationship with the activation energy of 7.19 kcal/mol. The rate determining step is believed to be the surface diffusion of activated carbon species, but the more subtle theoretical treatment is required for the more precise interpretation.

Synthesis of Graphene on Hexagonal Boron Nitride by Low Pressure Chemical Vapor

  • Han, Jae-Hyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.391-392
    • /
    • 2012
  • Graphene is a perfectly two-dimensional (2D) atomic crystal which consists of sp2 bonded carbon atoms like a honeycomb lattice. With its unique structure, graphene provides outstanding electrical, mechanical, and optical properties, thus enabling wide variety of applications including a strong potential to extend the technology beyond the conventional Si based electronic materials. Currently, the widespread application for electrostatically switchable devices is limited by its characteristic of zero-energy gap and complex process in its synthesis. Several groups have investigated nanoribbon, strained, or nanomeshed graphenes to induce a band gap. Among various techniques to synthesize graphene, chemical vapor deposition (CVD) is suited to make relatively large scale growth of graphene layers. Direct growth of graphene on hexagonal boron nitride (h-BN) using CVD has gained much attention as the atomically smooth surface, relatively small lattice mismatch (~1.7%) of h-BN provides good quality graphene with high mobility. In addition, induced band gap of graphene on h-BN has been demonstrated to a meaningful value about ~0.5 eV.[1] In this paper, we report the synthesis of grpahene / h-BN bilayer in a chemical vapor deposition (CVD) process by controlling the gas flux ratio and deposition rate with temperature. The h-BN (99.99%) substrate, pure Ar as carrier gas, and $CH_4$ are used to grow graphene. The number of graphene layer grown on the h-BN tends to be proportional to growth time and $CH_4$ gas flow rate. Epitaxially grown graphene on h-BN are characterized by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.

  • PDF