• Title/Summary/Keyword: CVD growth

Search Result 374, Processing Time 0.035 seconds

Recent trends of gem-quality colorless synthetic diamonds (보석용 무색 합성 다이아몬드의 최근 동향)

  • Choi, Hyunmin;Kim, Youngchool;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.149-153
    • /
    • 2017
  • Recently, significant amounts of gem-quality colorless HPHT synthetic melee diamond have produced for the jewelry industry. Consequently, there have been reports of cases of fraud in the world diamond business. For example, intentionally selling synthetic diamond as natural diamond or intentionally mixing a natural diamond parcel with a synthetic. As a result, the separation of natural from synthetic melee diamonds has become increasingly critical. At present, 10,000 cubic hinge presses are used for the production of synthetic diamond in China. From among these, reportedly 1,000 presses are used for gem-quality diamond production. One press can produce up to 10ct melee-size diamonds in 24 hours. Randomly occurring pinpoint or flux-metal inclusions are diagnostic identification clues. However, some synthetic diamonds require advanced laboratory method for identification. In order to ensure consumer confidence, it is essential to screen melees so as to distinguish all synthetic goods.

Super-growth of Carbon Nanotubes by O2-assisted Microwave Plasma Chemical Vapor Deposition

  • Park, Sang-Eun;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Jo, Ju-Mi;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.387-387
    • /
    • 2011
  • 탄소 나노튜브(Carbon nanotubes, CNTs)는 육각형 모양의 구조로서 오직 탄소만으로 이루어진 소재이다. CNT는 열전도율이 다이아몬드보다 약 2배 우수하고, 전기 전도는 구리에 비해 1,000배 높으며, 강도는 강철보다 100배나 뛰어나다. CNT의 이러한 특성을 이용한 트랜지스터, 태양전지, 가스 검출을 위한 고감도 센서, 나노 섬유, 고분자-탄소나노튜브 고기능 복합체 등 많은 분야에서 연구가 활발히 진행되고 있다. 또한 수직으로 성장된 탄소 나노튜브는 일반적인 재료에서는 보기 드물게 힘들게 직경이 나노 크기인 반면 길이는 수 mm까지 합성 되기 때문에 앞서 언급한 분야로의 활용이 더욱 유리하며, 그 중에서도 나노 섬유, 나노 복합체로서의 활용에 극히 유용하다. 이러한 이유로 수직 배열된 CNT 합성에 많은 연구가 집중 되고 있다. 여러 합성 방법 중 성장 변수를 비교적 용이하게 조절 가능한 열 화학 기상 증착법(Thermal chemical vapor deposition, TCVD)을 이용하여 수직 배열된 수 mm의 CNT를 합성한 연구 결과들이 보고된 바 있다. 그러나 앞선 연구결과들은 CNT의 성장속도가 느릴 뿐만 아니라 합성 시간이 길어질수록 성장 속도가 감소하는 경향을 보였다. 반면, 마이크로웨이브 플라즈마 화학 기상 증착법(Microwave plasma CVD, MPCVD)은 기존의 다른 TCVD에 비해 낮은 온도에서 CNT를 합성할 수 있는 장점을 가지며, 고출력(~600 W 이상)의 플라즈마를 사용하기 때문에 성장률이 높고 고밀도의 CNT 합성이 가능하다. 본 연구에서는 철을 촉매금속으로 사용하고 MPCVD을 이용하여 얇은 다중벽 CNT를 합성하였다. 철은 직류 마그네트론 스퍼터(D.C magnetron sputter)를 사용하여 증착하였다. 합성시 가스는 탄소 공급원인 메탄($CH_4$)과 함께 플라즈마 공급원인 수소($H_2$)를 사용하였다. 또한 산소($O_2$)의 주입 여부에 따른 CNT의 성장 속도와 성장 길이를 비교하였다. 산소를 주입하였을 때, CNT의 성장 속도와 길이 모두 크게 향상됨을 확인 할 수 있었다. 이는 촉매금속 표면의 비정질 탄소의 흡착으로 인해 활성화된 촉매금속의 반응시간을 증가시키기 때문이다. 성장된 CNT는 주사전자 현미경(Scanning Electron Microscopy, SEM)과 라만 분광법(Raman spectroscopy)을 통해 표면형상과 결정성을 분석하였다.

  • PDF

Effect of the additive gas on the bonding structure and mechanical properties of the DLC films deposited by RF-PECVD (RF-PECVD법에 의해 증착된 DLC 박막의 결합구조와 기계적 특성에 관한 보조가스의 영향)

  • Choi, Bong-Geun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.145-152
    • /
    • 2015
  • In this work, we were investigated the effect of the additive gases on the relationship between bonding structure and mechanical properties of the deposited films when the DLC films were deposited on Si-wafer by the rf-PECVD method with the addition of small amounts of carbon dioxide and nitrogen to the mixture gas of methane and hydrogen. The deposition rate of the films increased as the rf-power increased, while it decreased with increasing the amount of additive gases. Also, as the carbon dioxide gas increased, the hydrogen content in the films decreased but the $sp^3/sp^2$ ratio of the films increased. In case of nitrogen gas, the hydrogen content decreased, however the $sp^3/sp^2$ ratio and nitrogen gas flow rate did not show a specific tendency.

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method (열화학 기상 증착법에 의한 비정질 SiOx 나노와이어의 성장)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.123-128
    • /
    • 2017
  • Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.

Field emission properties of CNT-W tips as a function of the composition ratio of Ni and Co catalysts in CNT growth (CNT 성장시 Ni 및 Co 촉매의 조성비에 따른 CNT-W 팁의 전계방출 특성 분석)

  • Kim, Won;Yun, Sung-Jun;Kim, Young-Kwang;Kim, Jong-Pil;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1269-1270
    • /
    • 2007
  • Carbon nanotubes (CNTs) are directly grown on W-tips at $700^{\circ}C$ using an ICP-CVD method. Sharpening of W-tip is done by electrochemical etch and their diameters are limited to range from $3{\mu}m$ to $5{\mu}m$. Catalysts for CNTs growth are formed by RF and DC co-sputtering systems using Ni and Co. The composition ratio of Ni and Co has been evaluated by energy dispersive x-ray spectroscopy (EDS). The micro-images of CNTs are monitored by field emission scanning electron microscope (FESEM). It is observed from Raman study that the intensity of the D-peak is increased by increasing the amount of Co catalyst. Furthermore, the measurement of field emission properties of CNTs show that the CNT grown on a single Co catalyst possess the greatest performance such as $V_{th}$=1,115V and $I_{max}=164{\mu}A$.

  • PDF

Electrical Properties of Al2O3 Films Grown by the Electron Cyclotron Resonance Plasma-Enhanced Atomic Layer Deposition (ECR-PEALD) and Thermal ALD Methods (전자 사이클로트론 공명 플라즈마와 열 원자층 증착법으로 제조된 Al2O3 박막의 물리적·전기적 특성 비교)

  • Yang, Dae-Gyu;Kim, Yang-Soo;Kim, Jong-Heon;Kim, Hyoung-Do;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.295-300
    • /
    • 2017
  • Aluminum-oxide($Al_2O_3$) thin films were deposited by electron cyclotron resonance plasma-enhanced atomic layer deposition at room temperature using trimethylaluminum(TMA) as the Al source and $O_2$ plasma as the oxidant. In order to compare our results with those obtained using the conventional thermal ALD method, $Al_2O_3$ films were also deposited with TMA and $H_2O$ as reactants at $280^{\circ}C$. The chemical composition and microstructure of the as-deposited $Al_2O_3$ films were characterized by X-ray diffraction(XRD), X-ray photo-electric spectroscopy(XPS), atomic force microscopy(AFM) and transmission electron microscopy(TEM). Optical properties of the $Al_2O_3$ films were characterized using UV-vis and ellipsometry measurements. Electrical properties were characterized by capacitance-frequency and current-voltage measurements. Using the ECR method, a growth rate of 0.18 nm/cycle was achieved, which is much higher than the growth rate of 0.14 nm/cycle obtained using thermal ALD. Excellent dielectric and insulating properties were demonstrated for both $Al_2O_3$ films.

Thermal CVD of Silica Thin Film by Organic Silane Compound (유기 실란화합물을 이용한 SiO2 박막의 열CVD)

  • Kim, Byung-Hoon;Ahn, Ho-Geun;Imaishi, Nobuyuki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.985-989
    • /
    • 1999
  • Silica($SiO_2$) thin film was synthesized by a low pressure metal organic chemical vapor deposition(LPMOCVD) using organic silane compound. Triethyl orthosilicate was used as a source material. Operation pressure was 1~100 torr at outlet of the reactor and deposition temperature was $600{\sim}900^{\circ}C$. The experimental results showed that the high reaction temperature and high source gas concentration led to higher growth rate of $SiO_2$. The step coverage of films on micro-scale trenches was fairly good, which resulted from the phenomena that the condensed oligomers flow into the trenches. We estimated a reaction path that the source gas polymerizes and produces oligomers (dimer, trimer, tetramer, etc.), which diffuse and condense on the solid surface. The chemical species in the gas phase at the outlet of reactor tube were analyzed by quadrapole mass spectrometer. The peaks, assigned to be monomer, dimer of source gas and geavier molecules, were observed at 650 or $700^{\circ}C$. At higher temperature($900^{\circ}C$), the peaks of the heavy molecules disappeared, because almost all the source gas and intermediate(polymerized oligomer) molecules were oxidized or condensed on colder tube wall.

  • PDF

Chemical vapor deposition of $TaC_xN_y$ films using tert-butylimido tris-diethylamido tantalum(TBTDET) : Reaction mechanism and film characteristics

  • Kim, Suk-Hoon;Rhee, Shi-Woo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • Tantalum carbo-nitride($T_aC_xN_y$) films were deposited with chemical vapor deposition(CVD) using tert-butylimido tris-diethylamido tantalum (TBTDET, $^tBu-N=Ta-(NEt_2)_3$, $Et=C_2H_5$, $^tBu=C(CH_3)_3$) between $350^{\circ}C$ and $600^{\circ}C$ with argon as a carrier gas. Fourier transform infrared (FT-IR)spectroscopy was used to study the thermal decomposition behavior of TBTDET in the gas phase. When the temperature was increased, C-H and C-N bonding of TBTDET disappeared and the peaks of ethylene appeared above $450^{\circ}C$ in the gas phase. The growth rate and film density of $T_aC_xN_y$ film were in the range of 0.1nm/min to 1.30nm/min and of $8.92g/cm^3$ to $10.6g/cm^3$ depending on the deposition temperature. $T_aC_xN_y$ films deposited below $400^{\circ}C$ were amorphous and became polycrystal line above $500^{\circ}C$. It was confirmed that the $T_aC_xN_y$ film was a mixture of TaC, graphite, $Ta_3N_5$, TaN, and $Ta_2O_5$ phases and the oxide phase was formed from the post deposition oxygen uptake. With the increase of the deposition temperature, the TaN phase was increased over TaC and $Ta_3N_5$ and crystallinity, work function, conductivity and density of the film were increased. Also the oxygen uptake was decreased due to the increase of the film density. With the increase of the TaC phase in $T_aC_xN_y$ film, the work function was decreased to 4.25eV and with the increase of the TaN phase in $T_aC_xN_y$ film,it was increased to 4.48eV.

  • PDF

Electrochemical properties of heat-treated multi-walled carbon nanotubes (열처리된 탄소나노튜브 상대전극의 전기화학적 특성 연구)

  • Lee, S.K.;Moon, J.H.;Hwang, S.H.;Kim, G.C.;Lee, D.Y.;Kim, D.H.;Jeon, M.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • We have studied the effect of heat treatment of multi-walled carbon nanotubes (MWNTs) as a counter electrode on the electro-chemical properties of dye-snsitized solar cells. MWNTs on the p-type Si substrate were synthesized by thermal chemical vapor deposition (CVD) using Fe catalysts. We prepared the two types of MWNTs samples with the different diameters. The rapid thermal annealing (RTA) treatment for the MWNTs was carried out at the growth temperature ($900^{\circ}C$) for 1 minute with $N_2$ gas atmosphere. The structural, electrical and electrochemical properties of MWNTs were investigated by field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, 2-point probe station and electrochemical impedance spectroscopy (EIS). The I(D)/I(G) ratio of heat-treated MWNTs in Raman spectra was considerably decreased. It was also found that the heat-treated MWNTs showed better redox reaction of iodide at the interface between MWNTs surface and electrolyte than that of as-grown MWNTs. The redox resistance value of heat-treated electrodes was measured to be much lower than that of as-grown electrode at the interface. As a result, the counter electrode using the heat-treated MWNTs showed better electrochemical properties.

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF