• Title/Summary/Keyword: CVD growth

Search Result 374, Processing Time 0.027 seconds

Application of thermodynamics to chemical vapor deposition (화학증착에서 열역학의 응용)

  • Latifa Gueroudji
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.80-83
    • /
    • 1999
  • Processing of thin films by chemical vapor deposition(CVD) is accompanied by chemical reactions, in which the rigorous kinetic analysis is difficult to achieve. In these conditions, thermodynamic calculation leads to better understanding of the CVD process and helps to optimise the experimental parameters to obtain a desired product. A CVD phase diagram has been used as guide lines for the process. By determining the effect of each process variable on the driving force for deposition, the thermodynamic limit of the substrate temperature for a diamond deposition is calculated in the C-H system by assuming that the limit is defined by the CVD diamond phase diagram. The addition of iso-supersaturation ratio lines to the CVD phase diagram in the Si-Cl-H system provides additional information about the effects of CVD porcess variables.

  • PDF

Thermodynamic analysis of the deposition process of SiC/C functionally gradient materials by CVD technique (CVD법을 이용한 SiC/C경사기능재료 증착공정의 열역학적 해석)

  • 박진호;이준호;신희섭;김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • A complex chemical equilibrium analysis was performed to study the hot-wall CVD process of the SiC/C functionally gradient materials (FGM). Thermochemical calculations of the Si-C-H-Cl system were carried out, and the effects of process variables(deposition temperature, reactor pressure, C/[Si+C] and H/[Si+C] ratios in the source gas) on the composition of deposited layers and the deposition yield were investigated. The CVD phase diagrams of the SiC/C FGM deposition were obtained, and the optimum process windows were estimated from the results.

Optimized Electroplishing Process of Copper Foil Surface for Growth of Single Layer Graphene with Large Grain Size (큰 결정 크기를 가지는 단일층 그래핀 성장을 위한 구리 호일의 전해연마 공정 최적화)

  • Kim, Jaeeuk;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Graphene grown on copper-foil substrates by chemical vapor deposition (CVD) has been attracting interest for sensor applications due to an extraordinary high surface-to-volume ratio and capability of large-scale device fabrication. However, CVD graphene has a polycrystalline structure and a high density of grain boundaries degrading its electrical properties. Recently, processes such as electropolishing for flattening copper substrate has been applied before growth in order to increase the grain size of graphene. In this study, we systemically analyzed the effects of the process condition of electropolishing copper foil on the quality of CVD graphene. We observed that electropolishing process can reduce surface roughness of copper foil, increase the grain size of CVD graphene, and minimize the density of double-layered graphene regions. However, excessive process time can rather increase the copper foil surface roughness and degrade the quality of CVD graphene layers. This work shows that an optimized electropolishing process on copper substrates is critical to obtain high-quality and uniformity CVD graphene which is essential for practical sensor applications.

Fabrication of ceramic fibre composite and improvement of its property (세라믹 섬유 복합체의 제조 및 물성 향상)

  • 김법진;신재혁;신동우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.203-212
    • /
    • 1996
  • Applicability of SiC coating through CVD process and PCS(polycarbosilane) impregnation for the oxidation resistance and mechanical properties of C/C composite was studied. The SiC layer coated by CVD was deposited uniformly on the C/C composite, whereas the SiC converted from PCS impregnation wetted around individual carbon fiber. The PCS-impregnated C/C composite exhibited a significant increase of bending strength in comparison with as received C/C composite. This increase in the mechanical property could be attributed to the high bonding strength between fibers due to an impregnated SiC phase. The PCS-impregnated C/C showed 25% improvement in density, 3.5 times higher MOR and 2.8 times higher oxidation resistance compared to the as-received C/C. The increments due to PCS impregnation were more effective than CVD process.

  • PDF

EFFECT OF SUBSTRATE BIAS ON THE DIAMOND GROWTH USING MICROWAVE PLASMA CVD

  • Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.303-306
    • /
    • 1999
  • On the effect of substrate bias at first stage of diamond synthesis at lower substrate temperature(approximately 673K) using microwave plasma CVD and effect of reaction gas system for the bias enhanced nucleation were studied. The reaction gas was mixture of methane and hydrogen or carbon monoxide and hydrogen. The nucleation density of applied bias -150V using $CH_4-H_2$ reaction gas system, significantly higher than that of $C-H_2$ reaction gas system. When the $CH_4-H_2$ reaction was used, nucleation density was increased because of existence of SiC as a interface for diamond nucleation. By use of this negative bias effect for fabrication of CVD diamond film using two-step diamond growth without pre-treatment, fabrication of the diamond film consist of diamond grains $0.2\mu\textrm{m}$ in diameter was demonstrated

  • PDF

3C-SiC/Si 에피층 성장과 Ga 불순물 효과

  • 박국상;김광철;김선중;서영훈;남기석;이형재;나훈균;김정윤;이기암
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.141-144
    • /
    • 1997
  • High quality 3C-SiC epilayer was grown on Si(111) at 125$0^{\circ}C$ using chemical vapor deposition(CVD) technique by pyrolyzing tetramethylsilane(TMS). 3C-SiC epilayer was doped by tetramethylgallium(TMGa) during the CVD growth. The crystallinity of 3C-SiC was significantly enhanced by doping the gallium impurity.

  • PDF

Growth characteristics of single-crystalline 6H-SiC homoepitaxial layers grown by a thermal CVD (화학기상증착법으로 성장시킨 단결정 6H-SiC 동종박막의 성장 특성)

  • 장성주;설운학
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • As a semiconductor material for electronic devices operated under extreme environmental conditions, silicon carbides (SiCs) have been intensively studied because of their excellent electrical, thermal and other physical properties. The growth characteristics of single- crystalline 6H-SiC homoepitaxial layers grown by a thermal chemical vapor deposition (CVD) were investigated. Especially, the successful growth condition of 6H-SiC homoepitaxial layers using a SiC-uncoated graphite susceptor that utilized Mo-plates was obtained. The CVD growth was performed in an RF-induction heated atmospheric pressure chamber and carried out using off-oriented ($3.5^{\circ}$tilt) substrates from the (0001) basal plane in the <110> direction with the Si-face side of the wafer. In order to investigate the crystallinity of grown epilayers, Nomarski optical microscopy, transmittance spectra, Raman spectroscopy, XRD, Photoluninescence (PL) and transmission electron microscopy (TEM) were utilized. The best quality of 6H-SiC homoepitaxial layers was observed in conditions of growth temperature $1500^{\circ}C$ and C/Si flow ratio 2.0 of $C_3H_8$ 0.2 sccm & $SiH_4$ 0.3 sccm.

  • PDF

Epitaxial Growth of GaAs/GaAs and GaAs/Si by LCVD (레이저 CVD를 이용한 GaAs/GaAs 및 GaAs/Si 결정성장연구)

  • Choi, W.L.;Ku, J.K.;Chung, J.W.;Kwon, O.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.79-82
    • /
    • 1989
  • We studied the epitaxial growth of GaAs/GaAs and GaAs/Si by Laser CVD with 193nm ArF pulsed excimer laser. The source gases of TMGa and AsC13 or TMGa-TMAs adducts are mixed with H2, and photolyzed above the substrate which is heated up to around 300$^{\circ}C$. Then the photolyzed atoms are deposited on the silicon or GaAs substrate. The deposited films are analyzed with ESKA depth profiling and X-ray differaction method, which shows that the films on Si and GaAs are stoichiometric and crystalized at such a low temperature. We show a clear evidence for the epitaxial growth of GaAs on Si or GaAs on GaAs at low temperature by excimer laser CVD.

  • PDF

Diamond Synthesis by W Filament CVD (W Filament CVD에 의한 Diamond의 합성)

  • 서문규;강동균;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.550-558
    • /
    • 1989
  • Polycrystalline diamond films have been deposited on Si wafer Ly hot W filament CVD method using CH4H2 mixtures. The effects of surface pretreatment, W filament temperature, CH4 volume fraction, and addition of water vapor on the growth rate and morphology of the films were investigated. Surface pretretment was essential for depositing a continuous diamond film. Raising the filament temperature resulted in an increased growth rate and a better crystal quality of the film. As the methane content is varied from 0.5% to 5%, well-faceted crystals gradually transformed into spherical particles of non-diamond phase with a simultaneous increase in the growth rate. Addition of water vapor markedly improved the crystallinity to produce crystalline particles even with 5% methane mixture.

  • PDF

Domain Size and Density in Graphene Grown with Different CVD Growth

  • Gang, Cheong;Jeong, Da-Hui;Nam, Ji-Eun;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.264.1-264.1
    • /
    • 2013
  • Graphene is a two-dimensional carbon material whose structure is one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice. It has drawn significant attention with its distinguished structural and electrical properties. Extremely high mobility and a tunable band gap make graphene potentially useful for innovative approaches to electronics. Although mechanical exfoliation of graphite and decomposition of SiC surfaces upon thermal treatment have been the main method for graphene, they have some limitations in quality and scalability of as-produced graphene films. Solutionphase and solvothermal syntheses of graphene achieved a major improvement for processing, however for device fabrication, a reproducible method such as chemical vapor deposition (CVD) growth yielding high quality films of controlled thickness is required. In this research, we synthesized hexagonal graphene flakes on Cu foils by CVD method and controlled its coverage, density and the size of graphene domains by changing reaction parameters. It is important to control these parameters of graphene growth during synthesis in order to achieve tunable properties and optimized device performance.

  • PDF