• Title/Summary/Keyword: CVD graphene

Search Result 143, Processing Time 0.029 seconds

Gas sensor based on hydrogenated multilayer graphene

  • Park, Seong-Jin;Park, Min-Ji;Yu, Gyeong-Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.273.1-273.1
    • /
    • 2016
  • Graphene exhibits a number of unique properties that make it an intriguing candidate for use in sensor. Here, we report graphene-based gas sensor. Graphene was grown using CVD. Then, the sensor was made using standard lithography techniques. The sensor conductance increased upon exposure to NH3, whereas it decreased upon NO2, suggesting that NH3 and NO2 might be discriminated using the graphene-based sensor. To improve the sensitivity, graphene was treated with hydrogen plasma. After hydrogen treatment, the electrical properties of graphene changed from ambipolar to p-type semiconductors. In addition, the sensor performance was improved probably due to an opening of bandgap.

  • PDF

Direct Synthesis of Width-tailored Graphene Nanoribbon on Insulating Substrate

  • Song, U-Seok;Kim, Su-Yeon;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Jeon, Cheol-Ho;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.564-564
    • /
    • 2012
  • Graphene has been emerged as a fascinating material for future nanoelectronic applications due to its extraordinally electronic properties. However, their zero-bandgap semimetallic nature is a major problem for applications in high performance field-effect transistors (FETs). Graphene nanoribbons (GNRs) with narrow widths (${\geq}10nm$) exhibit semiconducting behavior, which can be used to overcome this problem. In previous reports, GNRs were produced by several approaches, such as electron beam lithography patterning, chemically derived GNRs, longitudinal unzipping of carbon nanotubes, and inorganic nanowire template. Using these methods, however, the width distribution of GNRs was a quiet broad and substantial defects were inevitably occurred. Here, we report a novel approach for fabricating width-tailored GNRs by focused ion beam-assisted chemical vapor deposition (FIB-CVD). Width-tailored phenanthrene ($C_{14}H_{10}$) templates for direct growth of GNRs were prepared on $SiO_2$/Si substrate by FIB-CVD. The GNRs on the templates were synthesized at $900-1,050^{\circ}C$ with introducing $CH_4$ $(20sccm)/H_2$ (10 sccm) mixture gas for 10-300 min. Structural characterizations of the GNRs were carried out using Raman spectroscopy, scanning electron microscopy, and atomic force microscopy.

  • PDF

Controlled Plasma Treatment for Edge Contacts of Graphene (그래핀의 엣지 접합 (Edge Contact)을 위한 플라즈마 처리 연구)

  • Yue, Dewu;Ra, Chang-Ho;Liu, Xiaochi;Daeyeong, Daeyeong;Yu, Won-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.293-293
    • /
    • 2014
  • The applicability of graphene has been demonstrated in the electronic fields. But, high performance of graphene is limited by the contact resistance (Rc) at the metal-graphene interface. Recently, Rc was found to be improved by forming edge-contacted graphene via theoretical simulation. Based on the differences between the surface and edge contacts at the M-G interface, we demonstrate "edge-contacted" graphene through the use of a controlled plasma processing technique that generates the edge structure of the bond and significantly reduces the contact resistance. The contact resistance attained by using pre-plasma processing was of $270{\Omega}{\cdot}{\mu}m$. Mechanisms of pre-plasma process leading to low Rc was revealed by SEM and Raman spectroscopy. In the end, controlled pre-plasma processing enabled to fabricate CVD-graphene field effect transistors with an enhanced adhesion and improved carrier mobility.

  • PDF

The study of thermal properties of graphene/Cu foam hybrid structures (그래핀/구리폼과 그래파이트 하이브리드 구조체의 열전도 특성 연구)

  • Kim, Hee Jin;Kim, Hyeungkeun;Kim, Yena;Lee, Woo Sung;Yoon, Dae Ho;Yang, Woo Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.235-240
    • /
    • 2013
  • Pure-carbon materials such as graphite, graphene, carbon nanotubes, and diamond have very high thermal conductivities. The reported thermal conductivity of graphene is in the range 3000~5000W/m-K at room temperature. Here, we developed graphene/cu foam hybrid type heat spreader to obtain higher thermal conductivity than Cu foam. Hybrid materials were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and thermal conductivity measurement system; LFA (Laser Flash Analysis @ LFA 447, NETZSCH). We suggest that excellent thermal properties of graphene/cu foam hybrid structures are beneficial for all proposed electrical applications and can lead to a thermal management application.

플라즈마 처리에 따른 그래핀의 결함(Defect)발생 연구

  • Im, Yeong-Dae;Ra, Chang-Ho;Lee, Seung-Hwan;Yu, Won-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.183-184
    • /
    • 2012
  • 플라즈마 처리에 따른 그래핀의 결함발생 연구에 대해 보고한다. 본 연구에 적용된 그래핀은 그라파이트에서 박리된 그래핀 (Exfoliated graphene: EG)과 CVD 방법으로 합성된 그래핀(CVD-G)이다. 본 연구에서는 플라즈마에 처리조건에 따른 CVD-G와 EG 간의 차이점에 대해 실험적 분석 및 이론적 해석을 수행하였다.

  • PDF

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF

Entangled-Mesh Graphene for Highly Stretchable Electronics

  • Han, Jae-Hyeon;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.351.1-351.1
    • /
    • 2016
  • While conventional electronic devices have been fabricated on the rigid and brittle Si based wafer as a semiconducting substrate, future devices are increasingly finding applications where flexibility and stretchability are further integrated to enable emerging and wearable devices. To achieve high flexibility and stretchability, various approaches are investigated such as polymer based conducting composite, thin metal films on the polymer substrate, and structural modifications for stretchable electronics. In spite of many efforts, it is still a challenge to identify a solution that offers both high stretchability and superior electrical properties. In this paper, we introduce a highly stretchable entangled-mesh graphene showing a potential to address such requirements as stretchability and good electrical performance. Entangle-mesh graphene was synthesized by CVD graphene on the Cu foil. To analyze the mechanical properties of entangled-mesh graphene, endurance and stretching tester have been used.

  • PDF

Graphene Synthesis on Pt Substrate using a Chemical Vapor Deposition Method (열화학기상증착법에 의한 백금 기판 위의 그래핀 합성)

  • Lee, Byeong-Joo;Jeong, Goo-Hwan
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.89-94
    • /
    • 2015
  • Graphene is a carbon-based two dimensional honeycomb lattice with monoatomic thickness and has attracted much attention due to its superior mechanical, electronic, and physical properties. Here, we present a synthesis of high quality graphene on Pt substrate using a chemical vapor deposition (CVD). We optimized synthesis condition with various parameters such as synthesis temperature, time, and cooling rate. Based on the results, we concluded that graphene synthesis is driven by mainly carbon adsorption on surface rather than precipitation of carbon which is dominant in other metal substrate. In addition, Pt substrate can be repeatedly used several times with high quality graphene.

  • PDF

CVD Graphene Synthesis on Copper Foils and Doping Effect by Nitric Acid

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.246-249
    • /
    • 2013
  • Graphene was obtained on Cu foil by thermal decomposition method. A gas mixture of $H_2$ and $CH_4$ and an ambient annealing temperature of $1,000^{\circ}C$ were used during the deposition for 30 Min., and for the transfer onto $SiO_2/Si$ and Si substrates. The physical properties of graphene were investigated with regard to the effect ofnitrogen atom doping and the various substrates used. The G/2D ratio decreased when the graphene became monolayer graphene. The graphene grown on $SiO_2/Si$ substrate showed a low intensity of the G/2D ratio, because the polarity of the $SiO_2$ layer improved the quality of graphene. The intensity of the G/2D ratio of graphene doped with nitrogen atoms increased with the doping time. The quality of graphene depended on the concentration of the nitrogen doping and chemical properties of substrates. High-quality monolayer graphene was obtained with a low G/2D ratio. The increase in the intensity of the G/2D ratios corresponded to a blue shift in the 2D peaks.

New Graphene Electronic Device Structure for High Ion/Ioff Ratio

  • Jeong, Hyeon-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.112-112
    • /
    • 2012
  • Graphene has been considered as one of the potential post Si-materials due to its high mobility. [1] However, since graphene is semi-conductor with zero band gap, it is difficult to achieve high Ion/Ioff ratio, one of the most important requirements for commercial devices. There have been many attempts to open its band gap for high Ion/Ioff ratio, but most of them end up lowering the mobility. [2-5] Thus, we proposed and demonstrated a new device structure for graphene transistor based on one of the unique properties of graphene for high Ion/Ioff: using this approach, we were able to achieve the ratio over $10^5$. [6] Our device has several major advantages over previously proposed graphene based electronic devices. Since our device does not alter the given properties of graphene, such as opening the band gap, it has no fundamental issues on mobility degradations. In addition, our device is fully compatible with current Si technology and we were able to fabricate the devices with 6 inch wafer scale with CVD (Chemical Vapor Deposition) grown graphene. In this presentation, we will discuss about the details of our graphene device including the device structure and the detailed understanding of working mechanism. We will present device characteristics including I-V curves with $10^5$ on/off ratio. We will also present the performance of an inverter based on our devices. Finally, we will discuss the current issues and their potential solutions.

  • PDF