• 제목/요약/키워드: CUDA 프레임워크

검색결과 14건 처리시간 0.026초

비x86 플랫폼 상에서의 CUDA 컴퓨팅을 위한 QEMU 및 GPGPU-Sim 기반 시뮬레이션 프레임워크 개발 (A Simulation Framework for CUDA Computing on Non-x86 Platforms based on QEMU and GPGPU-Sim)

  • 황재민;최종욱;최성림;남병규
    • 한국산업정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.15-22
    • /
    • 2014
  • 본 논문에서는 QEMU와 GPGPU-Sim에 기반하여 비x86 플랫폼을 위한 CUDA 시뮬레이션 프레임워크를 제안한다. 기존 CPU-GPU 이종 컴퓨팅 시뮬레이터는 x86 CPU 모델만을 지원하거나 CUDA를 지원하지 않는 한계를 가진다. 제안된 시뮬레이터는 이러한 문제를 해결하기 위해 x86을 포함하여 비x86 CPU 모델을 지원 가능한 QEMU와 CUDA를 지원하는 GPU 시뮬레이터인 GPGPU-Sim을 통합하였다. 이를 통해 비x86 기반의 CUDA 컴퓨팅 환경을 시뮬레이션할 수 있도록 하였다.

PyCUDA 프레임워크에서 볼륨 렌더링을 구현하기 위한 새로운 커널 디자인 (Novel Kernel Design for Implementing Volume Rendering in the PyCUDA Framework)

  • 이수호;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.349-351
    • /
    • 2022
  • 본 논문에서는 계산양이 큰 볼륨 렌더링을 구현할 수 있는 파이썬 기반의 CUDA(Computed Unified Device Architecture) 커널(Kernel) 디자인에 대해서 소개한다. 최근에 파이썬은 인공지능뿐만 아니라 서버, 보안, GUI, 데이터 시각화, 빅 데이터 처리 등 다양한 분야에서 활용이 되고 있기 때문에 인터페이스만을 위한 언어라는 색을 탈피한지 오래이다. 본 논문에서는 대용량 병렬처리 기법인 NVIDIA의 CUDA를 이용하여 파이썬 환경에서 커널을 디자인하고, 계산양이 큰 볼륨 렌더링이 빠르게 계산되는 결과를 보여준다. 결과적으로 C언어 기반의 CUDA뿐만 아니라, 상대적으로 개발이 효율적인 파이썬 환경에서도 GPU(Graphic Processing Unit)기반 애플리케이션 개발이 가능하다는 것을 볼륨 렌더링을 통해 보여준다.

  • PDF

메모리 로딩 시간을 고려한 GPU 병렬 알고리즘의 성능 개선 방안 (Performance Enhancement of GPU Parallelism Algorithm including Memory Loading Time)

  • 배병걸;이진우;박일남;임은진;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2012년도 제24회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.119-120
    • /
    • 2012
  • GPU를 이용한 병렬 알고리즘은 어떤 메모리를 사용하는지에 따라 시스템의 전체적인 성능이 달라진다. 본 논문은 GPU 환경에서 실행되는 CUDA 프레임워크에서 병렬처리를 이용하여 문서 분류 시스템의 속도를 향상시키고자 할 때 메모리 로딩 시간이 전체적인 시스템의 성능에 미치는 영항을 연구하였다. 기존의 CPU 환경에서 구현했을 때와 비교하여 어느 정도의 성능 향상이 있었는지 실험하였으며 이전 연구에서 고려하지 않았던 메모리를 읽는데 걸리는 시간을 고려하여 현실적인 실행 시간을 비교하였다. 실험 결과에 의하면 CPU 에서 구현했을 때의 연산 속도보다 GPU의 텍스쳐 메모리를 사용하여 구현하였을 때 문서분류 성능이 향상되는 효과가 있음을 알 수 있었다.

  • PDF

미리 계산된 밀도 쿼리 고속화를 이용한 PyCUDA 기반의 최적화된 볼륨 렌더링 (Optimized Volume Rendering Based on PyCUDA with Precomputed Density Query Acceleration)

  • 이수호;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.361-364
    • /
    • 2023
  • 볼륨 렌더링은 3D 밀도 데이터를 가시화 할 때 활용되는 기술로써 이 알고리즘에서 중요한 것은 렌더링 시간 단축이며, 본 논문에서는 이 계산시간을 효율적으로 개선시킬 수 있는 방법을 제시한다. 렌더링의 처리시간은 탐색하는 횟수에 따라 결과 차이가 발생하지만, 탐색 횟수가 적을 경우 렌더링의 품질이 저하되고 반대인 경우에는 화질의 표현력은 높으나 많은 처리시간이 소요된다. 따라서 화질이 떨어지지 않는 최소의 탐색 방법이 요구되므로 본 논문에서는 밀도의 탐색 최적화와 시간별 밀도가 존재하는 위치를 예측하여 계산을 효율적으로 처리 할 수 있는 PyCUDA 프레임워크에 대해서 소개한다.

  • PDF

CUDA 기반 숄레스키 분해 성능 최적화 환경 탐색 (Exploration of Optimization Environment for CUDA-based Cholesky Decomposition)

  • 강준범;이명호;박능수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.15-17
    • /
    • 2024
  • 최근 다양한 연구 분야에서는 CUDA 프레임워크를 이용하여 병렬 처리를 통해 연산 시간을 단축하는데 성공하고 있다. 이 중 숄레스키 분해는 양의 정부호 행렬을 하삼각행렬로 분해하는 과정에서 많은 행렬 곱셈이 요구되어 GPU 의 구조적 특징을 활용하면 상당한 가속화가 가능하다. 따라서 이 논문에서는 CUDA 코어에 연산을 할당할 때, 핵심 요소인 블록의 개수와 블록 당 쓰레드 개수를 조절할 수 있는 병렬 숄레스키 분해 연산 프로그램을 구현하였다. 서로 다른 세 종류의 행렬 크기에 대해 다양한 블록 수-쓰레드 수 환경을 설정하여 가속화 정도를 측정한 결과, 각 행렬 별 최적 환경에서 동일 그룹 내 최장 시간 대비, 1000x1000 행렬에서는 약 1.80 배, 2000x2000 행렬에서는 약 2.94 배의 추가적인 가속화를 달성하였다.

GPU 병렬성을 이용한 문서 유사도 계산 성능 개선 (Improving the Performance of Document Similarity by using GPU Parallelism)

  • 박일남;배병걸;임은진;강승식
    • 정보처리학회논문지B
    • /
    • 제19B권4호
    • /
    • pp.243-248
    • /
    • 2012
  • 정보검색 분야에서 벡터 모델, 문서 클러스터링 등은 입력 문서 개수가 증가할수록 유사도 계산 속도가 시스템의 성능에 많은 영향을 미치고 있다. 본 논문에서는 문서 유사도 계산 성능을 향상시키기 위하여 유사도를 계산하는 연산을 CPU 대신에 GPU를 이용하는 CUDA 프레임워크에서 병렬처리 기법으로 구현하는 방법을 제안하였다. 이 방법은 보편적인 방식인 CPU 환경에서 구현했을 때와 비교할 때 최대 15배까지 성능이 향상되었다. 또한, 기존의 CUDA 라이브러리인 CUBLAS와 Thrust를 사용한 방법보다도 각각 5.2배, 3.4배의 성능 개선 효과가 있음을 확인하였다.

CUDA를 이용한 효과적인 GPU 광선추적 가속 알고리즘 (An efficient acceleration algorithm of GPU ray tracing using CUDA)

  • 지중현;윤동호;고광희
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.469-474
    • /
    • 2009
  • 본 논문은 CUDA를 이용하여 GPU에서의 최적화된 kd-tree 탐색구조 환경과 광선/삼각형의 교차검사 알고리즘을 통한 실시간의 광선추적 시스템을 제안한다. 기존의 GPU 기반 kd-tree 탐색 알고리즘은 대부분 스택이 없는 GPU 하드웨어의 특성상 임의의 단말노드에서 기하요소의 교차검사가 실패할 경우 상위노드로 상향식 탐색을 진행하기 때문에 노드에 대한 중복 방문이 반드시 필요하거나 혹은 불필요한 메모리의 적재가 필요하기 때문에 큰 장면에 대한 광선추적은 어렵게 된다. 본 논문에서 제안하는 알고리즘은 CPU 방식의 kd-tree 탐색과 비슷하게 동작하도록 stack을 CUDA 프레임워크를 이용하여 GPU의 지역메모리로 구현하였기 때문에 기존의 방법 등에서의 문제점을 해결하였다. 또한 탐색구조를 통해서 찾은 말단 삼각형들의 처리를 위해서 최신의 CPU 기반의 교차검사 알고리즘인 Plucker 좌표계 검사를 CUDA로 구현하여 병렬 가속시켰다. Plucker 검사는 기존의 무게중심 좌표 대신에 광선과 삼각형 edge의 관계를 이용하는 간단한 연산만을 이용하는 장점이 있다. 전체 시스템은 단일 커널로 구성되어 있으며 병렬처리를 위한 복잡한 동기화나 광선패킷의 도입 없이 간단하게 구현되었다. 결과적으로 본 논문의 실험은 기존 알고리즘 대비 제안하는 알고리즘이 약 2배의 성능 향상이 있음을 보여 준다.

  • PDF

CUDA 프레임워크 상에서 스카이라인 질의처리 알고리즘 최적화 (Optimizing Skyline Query Processing Algorithms on CUDA Framework)

  • 민준;한환수;이상원
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권5호
    • /
    • pp.275-284
    • /
    • 2010
  • GPU는 대용량 데이터 처리를 위해 특화된 멀티 코어 기반의 스트림 프로세서로서 빠른 데이터 처리 속도 및 높은 메모리 대역 동의 장점을 가지며, CPU에 비해 가격이 저렴하다. 최근 이러한 GPU의 특성용 활용하여 범용 컴퓨팅 분야에 활용하고자 하는 시도가 계속되고 있다. 엔비디아에서 발표한 범용 병렬 컴퓨팅 아키텍처인 쿠다(CUDA) 프로그래밍 모델의 경우 프로그래머가 GPU 상에서 동작하는 범용 어플리케이션을 보다 손쉽게 개발할 수 있도록 지원한다. 본 논문에서는 쿠다 프로그래밍 모델을 이용하여 기본적인 중첩-반복 스카이라인 알고리즘을 병렬화시킨다. 그리고 스카이라인 알고리즘의 특성을 고려하여 GPU 자원용 효율적으로 사용할 수 있도록 GPU의 메모리 및 명령어 처리율에 중점을 두고 단계적인 최적화를 진행한다. 최적화 단계에 따라 각각 다른 성능 개선이 나타나는 것을 확인하였으며, 그 결과 기본 병렬 중첩-반복 알고리즘에 비해 평균 80%의 성능이 향상됨을 확인하였다.

GPU를 활용한 분산 컴퓨팅 프레임워크 성능 개선 연구 (A Study on Performance Improvement of Distributed Computing Framework using GPU)

  • 송주영;공용준;심탁길;신의섭;성기진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.499-502
    • /
    • 2012
  • 빅 데이터 분석의 시대가 도래하면서 대용량 데이터의 특성과 계산 집약적 연산의 특성을 동시에 가지는 문제 해결에 대한 요구가 늘어나고 있다. 대용량 데이터 처리의 경우 각종 분산 파일 시스템과 분산/병렬 컴퓨팅 기술들이 이미 많이 사용되고 있으며, 계산 집약적 연산 처리의 경우에도 GPGPU 활용 기술의 발달로 보편화되는 추세에 있다. 하지만 대용량 데이터와 계산 집약적 연산 이 두 가지 특성을 모두 가지는 문제를 처리하기 위해서는 많은 제약 사항들을 해결해야 하는데, 본 논문에서는 이에 대한 대안으로 분산 컴퓨팅 프레임워크인 Hadoop MapReduce와 Nvidia의 GPU 병렬 컴퓨팅 아키텍처인 CUDA 흘 연동하는 방안을 제시하고, 이를 밀집행렬(dense matrix) 연산에 적용했을 때 얻을 수 있는 성능 개선 효과에 대해 소개하고자 한다.

2대의 Kinect 카메라를 이용한 3차원 물체의 복원 구현 (Implementation of 3D Object Reconstruction using a Pair of Kinect Cameras)

  • 신동원;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2014년도 하계학술대회
    • /
    • pp.135-138
    • /
    • 2014
  • 본 논문에서는 2대의 Kinect 카메라를 이용하여 실세계의 3차원 객체에 대한 복원을 수행하는 방법을 제안한다. 먼저 깊이 가중치가 추가된 계층적 결합형 양방향 필터를 이용하여 Kinect로부터 얻은 원본 깊이 영상을 보정한다. 그리고 카메라 캘리브레이션을 이용하여 카메라의 내부 파라미터와 외부 파라미터를 획득한다. 이를 이용해 3차원 워핑을 수행하여 각 시점의 데이터를 3차원 공간에 점군 모델로 복원하고 표면 모델링 방법을 이용하여 3차원 객체의 매끄러운 표면 모델을 생성한다. 실시간에 가까운 속도를 내기 위해서 계층적 결합형 양방향 필터와 3차원 워핑을 병렬 처리 프레임워크인 CUDA로 구현하여 고속화하였다. 실험을 통해 분리된 각 시점에서의 깊이 정보를 하나의 통합된 3차원 공간에 복원할 수 있었고 초당 5 fps의 속도로 동작하는 것을 확인하였다.

  • PDF