본 논문에서는 QEMU와 GPGPU-Sim에 기반하여 비x86 플랫폼을 위한 CUDA 시뮬레이션 프레임워크를 제안한다. 기존 CPU-GPU 이종 컴퓨팅 시뮬레이터는 x86 CPU 모델만을 지원하거나 CUDA를 지원하지 않는 한계를 가진다. 제안된 시뮬레이터는 이러한 문제를 해결하기 위해 x86을 포함하여 비x86 CPU 모델을 지원 가능한 QEMU와 CUDA를 지원하는 GPU 시뮬레이터인 GPGPU-Sim을 통합하였다. 이를 통해 비x86 기반의 CUDA 컴퓨팅 환경을 시뮬레이션할 수 있도록 하였다.
본 논문에서는 계산양이 큰 볼륨 렌더링을 구현할 수 있는 파이썬 기반의 CUDA(Computed Unified Device Architecture) 커널(Kernel) 디자인에 대해서 소개한다. 최근에 파이썬은 인공지능뿐만 아니라 서버, 보안, GUI, 데이터 시각화, 빅 데이터 처리 등 다양한 분야에서 활용이 되고 있기 때문에 인터페이스만을 위한 언어라는 색을 탈피한지 오래이다. 본 논문에서는 대용량 병렬처리 기법인 NVIDIA의 CUDA를 이용하여 파이썬 환경에서 커널을 디자인하고, 계산양이 큰 볼륨 렌더링이 빠르게 계산되는 결과를 보여준다. 결과적으로 C언어 기반의 CUDA뿐만 아니라, 상대적으로 개발이 효율적인 파이썬 환경에서도 GPU(Graphic Processing Unit)기반 애플리케이션 개발이 가능하다는 것을 볼륨 렌더링을 통해 보여준다.
GPU를 이용한 병렬 알고리즘은 어떤 메모리를 사용하는지에 따라 시스템의 전체적인 성능이 달라진다. 본 논문은 GPU 환경에서 실행되는 CUDA 프레임워크에서 병렬처리를 이용하여 문서 분류 시스템의 속도를 향상시키고자 할 때 메모리 로딩 시간이 전체적인 시스템의 성능에 미치는 영항을 연구하였다. 기존의 CPU 환경에서 구현했을 때와 비교하여 어느 정도의 성능 향상이 있었는지 실험하였으며 이전 연구에서 고려하지 않았던 메모리를 읽는데 걸리는 시간을 고려하여 현실적인 실행 시간을 비교하였다. 실험 결과에 의하면 CPU 에서 구현했을 때의 연산 속도보다 GPU의 텍스쳐 메모리를 사용하여 구현하였을 때 문서분류 성능이 향상되는 효과가 있음을 알 수 있었다.
볼륨 렌더링은 3D 밀도 데이터를 가시화 할 때 활용되는 기술로써 이 알고리즘에서 중요한 것은 렌더링 시간 단축이며, 본 논문에서는 이 계산시간을 효율적으로 개선시킬 수 있는 방법을 제시한다. 렌더링의 처리시간은 탐색하는 횟수에 따라 결과 차이가 발생하지만, 탐색 횟수가 적을 경우 렌더링의 품질이 저하되고 반대인 경우에는 화질의 표현력은 높으나 많은 처리시간이 소요된다. 따라서 화질이 떨어지지 않는 최소의 탐색 방법이 요구되므로 본 논문에서는 밀도의 탐색 최적화와 시간별 밀도가 존재하는 위치를 예측하여 계산을 효율적으로 처리 할 수 있는 PyCUDA 프레임워크에 대해서 소개한다.
최근 다양한 연구 분야에서는 CUDA 프레임워크를 이용하여 병렬 처리를 통해 연산 시간을 단축하는데 성공하고 있다. 이 중 숄레스키 분해는 양의 정부호 행렬을 하삼각행렬로 분해하는 과정에서 많은 행렬 곱셈이 요구되어 GPU 의 구조적 특징을 활용하면 상당한 가속화가 가능하다. 따라서 이 논문에서는 CUDA 코어에 연산을 할당할 때, 핵심 요소인 블록의 개수와 블록 당 쓰레드 개수를 조절할 수 있는 병렬 숄레스키 분해 연산 프로그램을 구현하였다. 서로 다른 세 종류의 행렬 크기에 대해 다양한 블록 수-쓰레드 수 환경을 설정하여 가속화 정도를 측정한 결과, 각 행렬 별 최적 환경에서 동일 그룹 내 최장 시간 대비, 1000x1000 행렬에서는 약 1.80 배, 2000x2000 행렬에서는 약 2.94 배의 추가적인 가속화를 달성하였다.
정보검색 분야에서 벡터 모델, 문서 클러스터링 등은 입력 문서 개수가 증가할수록 유사도 계산 속도가 시스템의 성능에 많은 영향을 미치고 있다. 본 논문에서는 문서 유사도 계산 성능을 향상시키기 위하여 유사도를 계산하는 연산을 CPU 대신에 GPU를 이용하는 CUDA 프레임워크에서 병렬처리 기법으로 구현하는 방법을 제안하였다. 이 방법은 보편적인 방식인 CPU 환경에서 구현했을 때와 비교할 때 최대 15배까지 성능이 향상되었다. 또한, 기존의 CUDA 라이브러리인 CUBLAS와 Thrust를 사용한 방법보다도 각각 5.2배, 3.4배의 성능 개선 효과가 있음을 확인하였다.
본 논문은 CUDA를 이용하여 GPU에서의 최적화된 kd-tree 탐색구조 환경과 광선/삼각형의 교차검사 알고리즘을 통한 실시간의 광선추적 시스템을 제안한다. 기존의 GPU 기반 kd-tree 탐색 알고리즘은 대부분 스택이 없는 GPU 하드웨어의 특성상 임의의 단말노드에서 기하요소의 교차검사가 실패할 경우 상위노드로 상향식 탐색을 진행하기 때문에 노드에 대한 중복 방문이 반드시 필요하거나 혹은 불필요한 메모리의 적재가 필요하기 때문에 큰 장면에 대한 광선추적은 어렵게 된다. 본 논문에서 제안하는 알고리즘은 CPU 방식의 kd-tree 탐색과 비슷하게 동작하도록 stack을 CUDA 프레임워크를 이용하여 GPU의 지역메모리로 구현하였기 때문에 기존의 방법 등에서의 문제점을 해결하였다. 또한 탐색구조를 통해서 찾은 말단 삼각형들의 처리를 위해서 최신의 CPU 기반의 교차검사 알고리즘인 Plucker 좌표계 검사를 CUDA로 구현하여 병렬 가속시켰다. Plucker 검사는 기존의 무게중심 좌표 대신에 광선과 삼각형 edge의 관계를 이용하는 간단한 연산만을 이용하는 장점이 있다. 전체 시스템은 단일 커널로 구성되어 있으며 병렬처리를 위한 복잡한 동기화나 광선패킷의 도입 없이 간단하게 구현되었다. 결과적으로 본 논문의 실험은 기존 알고리즘 대비 제안하는 알고리즘이 약 2배의 성능 향상이 있음을 보여 준다.
GPU는 대용량 데이터 처리를 위해 특화된 멀티 코어 기반의 스트림 프로세서로서 빠른 데이터 처리 속도 및 높은 메모리 대역 동의 장점을 가지며, CPU에 비해 가격이 저렴하다. 최근 이러한 GPU의 특성용 활용하여 범용 컴퓨팅 분야에 활용하고자 하는 시도가 계속되고 있다. 엔비디아에서 발표한 범용 병렬 컴퓨팅 아키텍처인 쿠다(CUDA) 프로그래밍 모델의 경우 프로그래머가 GPU 상에서 동작하는 범용 어플리케이션을 보다 손쉽게 개발할 수 있도록 지원한다. 본 논문에서는 쿠다 프로그래밍 모델을 이용하여 기본적인 중첩-반복 스카이라인 알고리즘을 병렬화시킨다. 그리고 스카이라인 알고리즘의 특성을 고려하여 GPU 자원용 효율적으로 사용할 수 있도록 GPU의 메모리 및 명령어 처리율에 중점을 두고 단계적인 최적화를 진행한다. 최적화 단계에 따라 각각 다른 성능 개선이 나타나는 것을 확인하였으며, 그 결과 기본 병렬 중첩-반복 알고리즘에 비해 평균 80%의 성능이 향상됨을 확인하였다.
빅 데이터 분석의 시대가 도래하면서 대용량 데이터의 특성과 계산 집약적 연산의 특성을 동시에 가지는 문제 해결에 대한 요구가 늘어나고 있다. 대용량 데이터 처리의 경우 각종 분산 파일 시스템과 분산/병렬 컴퓨팅 기술들이 이미 많이 사용되고 있으며, 계산 집약적 연산 처리의 경우에도 GPGPU 활용 기술의 발달로 보편화되는 추세에 있다. 하지만 대용량 데이터와 계산 집약적 연산 이 두 가지 특성을 모두 가지는 문제를 처리하기 위해서는 많은 제약 사항들을 해결해야 하는데, 본 논문에서는 이에 대한 대안으로 분산 컴퓨팅 프레임워크인 Hadoop MapReduce와 Nvidia의 GPU 병렬 컴퓨팅 아키텍처인 CUDA 흘 연동하는 방안을 제시하고, 이를 밀집행렬(dense matrix) 연산에 적용했을 때 얻을 수 있는 성능 개선 효과에 대해 소개하고자 한다.
본 논문에서는 2대의 Kinect 카메라를 이용하여 실세계의 3차원 객체에 대한 복원을 수행하는 방법을 제안한다. 먼저 깊이 가중치가 추가된 계층적 결합형 양방향 필터를 이용하여 Kinect로부터 얻은 원본 깊이 영상을 보정한다. 그리고 카메라 캘리브레이션을 이용하여 카메라의 내부 파라미터와 외부 파라미터를 획득한다. 이를 이용해 3차원 워핑을 수행하여 각 시점의 데이터를 3차원 공간에 점군 모델로 복원하고 표면 모델링 방법을 이용하여 3차원 객체의 매끄러운 표면 모델을 생성한다. 실시간에 가까운 속도를 내기 위해서 계층적 결합형 양방향 필터와 3차원 워핑을 병렬 처리 프레임워크인 CUDA로 구현하여 고속화하였다. 실험을 통해 분리된 각 시점에서의 깊이 정보를 하나의 통합된 3차원 공간에 복원할 수 있었고 초당 5 fps의 속도로 동작하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.