• 제목/요약/키워드: CUDA (Compute Unified Device Architecture)

검색결과 58건 처리시간 0.021초

x264와 GPU를 이용한 고속 양안식 3차원 방송 시스템 (Fast Stereoscopic 3D Broadcasting System using x264 and GPU)

  • 최정아;신인용;호요성
    • 방송공학회논문지
    • /
    • 제15권4호
    • /
    • pp.540-546
    • /
    • 2010
  • 사용자에게 보다 실감나는 입체감을 제공하는 양안식 3차원 영상을 위해서는 기존 2차원 영상의 두 배에 해당하는 데이터가 필요하므로 이를 고속으로 처리하는데 어려움이 따른다. 본 논문에서는 2차원 영상과 깊이 영상을 입력 영상으로 한 고속 양안식 3차원 방송 시스템을 제안한다. 제안하는 시스템은 전송해야 할 데이터의 양을 줄이기 위해 전송 전에 H.264/AVC 오픈 소스 고속 부호화기인 x264를 이용하여 부호화를 수행한다. 수신단에서는 수신한 비트스트림을GPU(Graphics Processing Unit)에 내장된 CUDA 비디오 복호기 API를 이용해 설계된 복호기로 고속으로 복호하고, GPU를 이용해 고속으로 가상시점의 영상을 생성하여 양안식 3차원 영상을 재현한다. 제안한 시스템을 이용하면 수신단의 환경에 따라 2차원 디스플레이와 3차원 디스플레이에서 모두 영상을 출력할 수 있다. 컴퓨터 모의 실험을 통해 제안한 시스템이 3차원 양안식 콘텐츠를 초당 최대 24 프레임까지 서비스할 수 있음을 확인했다.

유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법 (Design of Omok AI using Genetic Algorithm and Game Trees and Their Parallel Processing on the GPU)

  • 안일준;박인규
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제37권2호
    • /
    • pp.66-75
    • /
    • 2010
  • 본 논문에서는 GPU(graphics processing unit)를 이용하여 오목의 인공지능 알고리즘 연산을 고속으로 수행하기 위한 효율적인 알고리즘 설계와 구현 방법을 제안한다. 본 논문에서 제안하는 게임 인공지능은 최소-최대 게임 트리(min-max game tree)와 유전 알고리즘(genetic algorithm)의 협업적 구조로 설계된다. 게임 트리와 유전 알고리즘의 평가함수(evaluation function) 부분은 많은 계산 량을 소모하지만 해 공간(solution space)의 수많은 후보 벡터에 대해 독립적으로 수행되기 때문에 본 논문에서는 이를 GPU 상에서의 대량 병렬처리를 통해 수행한다. NVIDIA CUDA(compute unified device architecture)환경에서의 실제 구현을 통해 CPU에서의 처리에 비해 게임 트리는 400배 이상의 수행 속도의 향상을, 유전 알고리즘은 300배 이상의 수행 속도의 향상을 각각 보였다. 본 논문에서는 스레드(thread)의 넘침(overflow)을 피하고 보다 효과적인 해 공간 탐색을 위해, 게임 트리를 이용하여 근방의 몇 단계까지 전역 탐색(full search)을 수행한 후 이후 단계는 유전 알고리즘을 이용하여 선별 탐색을 수행하는 협업적 인공지능을 제안한다. 다양한 실험 결과를 통해 제안하는 알고리즘은 게임의 인공지능을 향상시키고 게임의 규칙으로부터 주어진 시간 내에 문제를 해결할 수 있음을 보인다.

Ultrahigh-Resolution Spectral Domain Optical Coherence Tomography Based on a Linear-Wavenumber Spectrometer

  • Lee, Sang-Won;Kang, Heesung;Park, Joo Hyun;Lee, Tae Geol;Lee, Eun Seong;Lee, Jae Yong
    • Journal of the Optical Society of Korea
    • /
    • 제19권1호
    • /
    • pp.55-62
    • /
    • 2015
  • In this study we demonstrate ultrahigh-resolution spectral domain optical coherence tomography (UHR SD-OCT) with a linear-wavenumber (k) spectrometer, to accelerate signal processing and to display two-dimensional (2-D) images in real time. First, we performed a numerical simulation to find the optimal parameters for the linear-k spectrometer to achieve ultrahigh axial resolution, such as the number of grooves in a grating, the material for a dispersive prism, and the rotational angle between the grating and the dispersive prism. We found that a grating with 1200 grooves and an F2 equilateral prism at a rotational angle of $26.07^{\circ}$, in combination with a lens of focal length 85.1 mm, are suitable for UHR SD-OCT with the imaging depth range (limited by spectrometer resolution) set at 2.0 mm. As guided by the simulation results, we constructed the linear-k spectrometer needed to implement a UHR SD-OCT. The actual imaging depth range was measured to be approximately 2.1 mm, and axial resolution of $3.8{\mu}m$ in air was achieved, corresponding to $2.8{\mu}m$ in tissue (n = 1.35). The sensitivity was -91 dB with -10 dB roll-off at 1.5 mm depth. We demonstrated a 128.2 fps acquisition rate for OCT images with 800 lines/frame, by taking advantage of NVIDIA's compute unified device architecture (CUDA) technology, which allowed for real-time signal processing compatible with the speed of the spectrometer's data acquisition.

Simple Spectral Calibration Method and Its Application Using an Index Array for Swept Source Optical Coherence Tomography

  • Jung, Un-Sang;Cho, Nam-Hyun;Kim, Su-Hwan;Jeong, Hyo-Sang;Kim, Jee-Hyun;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.386-393
    • /
    • 2011
  • In this study, we report an effective k-domain linearization method with a pre-calibrated indexed look-up table. The method minimizes k-domain nonlinear characteristics of a swept source optical coherence tomography (SS-OCT) system by using two arrays, a sample position shift index and an intensity compensation array. Two arrays are generated from an interference pattern acquired by connecting a Fabry-Perot interferometer (FPI) and an optical spectrum analyzer (OSA) to the system. At real time imaging, the sample position is modified by location movement and intensity compensation with two arrays for linearity of wavenumber. As a result of evaluating point spread functions (PSFs), the signal to noise ratio (SNR) is increased by 9.7 dB. When applied to infrared (IR) sensing card imaging, the SNR is increased by 1.29 dB and the contrast noise ratio (CNR) value is increased by 1.44. The time required for the linearization and intensity compensation is 30 ms for a multi thread method using a central processing unit (CPU) compared to 0.8 ms for compute unified device architecture (CUDA) processing using a graphics processing unit (GPU). We verified that our linearization method is appropriate for applying real time imaging of SS-OCT.

GPU-ACCELERATED SPECKLE MASKING RECONSTRUCTION ALGORITHM FOR HIGH-RESOLUTION SOLAR IMAGES

  • Zheng, Yanfang;Li, Xuebao;Tian, Huifeng;Zhang, Qiliang;Su, Chong;Shi, Lingyi;Zhou, Ta
    • 천문학회지
    • /
    • 제51권3호
    • /
    • pp.65-71
    • /
    • 2018
  • The near real-time speckle masking reconstruction technique has been developed to accelerate the processing of solar images to achieve high resolutions for ground-based solar telescopes. However, the reconstruction of solar subimages in such a speckle reconstruction is very time-consuming. We design and implement a new parallel speckle masking reconstruction algorithm based on the Compute Unified Device Architecture (CUDA) on General Purpose Graphics Processing Units (GPGPU). Tests are performed to validate the correctness of our program on NVIDIA GPGPU. Details of several parallel reconstruction steps are presented, and the parallel implementation between various modules shows a significant speed increase compared to the previous serial implementations. In addition, we present a comparison of runtimes across serial programs, the OpenMP-based method, and the new parallel method. The new parallel method shows a clear advantage for large scale data processing, and a speedup of around 9 to 10 is achieved in reconstructing one solar subimage of $256{\times}256pixels$. The speedup performance of the new parallel method exceeds that of OpenMP-based method overall. We conclude that the new parallel method would be of value, and contribute to real-time reconstruction of an entire solar image.

GPU을 이용한 다중 고정 길이 패턴을 갖는 DNA 시퀀스에 대한 k-Mismatches에 의한 근사적 병열 스트링 매칭 (Parallel Approximate String Matching with k-Mismatches for Multiple Fixed-Length Patterns in DNA Sequences on Graphics Processing Units)

  • 호 티엔 루안;김현진;오승록
    • 전기학회논문지
    • /
    • 제66권6호
    • /
    • pp.955-961
    • /
    • 2017
  • In this paper, we propose a parallel approximate string matching algorithm with k-mismatches for multiple fixed-length patterns (PMASM) in DNA sequences. PMASM is developed from parallel single pattern approximate string matching algorithms to effectively calculate the Hamming distances for multiple patterns with a fixed-length. In the preprocessing phase of PMASM, all target patterns are binary encoded and stored into a look-up memory. With each input character from the input string, the Hamming distances between a substring and all patterns can be updated at the same time based on the binary encoding information in the look-up memory. Moreover, PMASM adopts graphics processing units (GPUs) to process the data computations in parallel. This paper presents three kinds of PMASM implementation methods in GPUs: thread PMASM, block-thread PMASM, and shared-mem PMASM methods. The shared-mem PMASM method gives an example to effectively make use of the GPU parallel capacity. Moreover, it also exploits special features of the CUDA (Compute Unified Device Architecture) memory structure to optimize the performance. In the experiments with DNA sequences, the proposed PMASM on GPU is 385, 77, and 64 times faster than the traditional naive algorithm, the shift-add algorithm and the single thread PMASM implementation on CPU. With the same NVIDIA GPU model, the performance of the proposed approach is enhanced up to 44% and 21%, compared with the naive, and the shift-add algorithms.

편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화 (A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing)

  • 이승현;김민영
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.253-263
    • /
    • 2013
  • 광학측정기법 중 주파수 스캐닝 간섭계는 기존 3차원 측정기법과 비교하여 광학 하드웨어 구조가 측정과정동안 고정되어 있어, 대물렌즈나 대상물체의 수직 스캐닝 없이 단지 광원의 주파수만 특정한 주파수 밴드내에서 스캐닝 하여 대상물체에 주사되므로, 우수한 광학 측정 성능을 보인다. 광원의 주파수를 변경하여 간섭계를 통해 간섭 영상을 획득한 후, 밝기 영상 데이터를 주파수 영역 데이터로 변환하고, 고속 푸리에 변환을 통한 주파수 분석을 이용하여 대상 물체의 높이 정보를 계측한다. 하지만, 대상물체의 광학적 특성에 기인한 광학노이즈와 주파수 스캐닝동안 획득되는 영상의 수에 따라 증가하는 영상처리시간은 여전히 주파수 스캐닝 간섭계의 문제이다. 이를 위해, 1) 편광기반 주파수 스캐닝 간섭계가 광학 노이즈에 대한 강인성을 확보하기 위해 제안되어진다. 시스템은 주파수 변조 레이저, 참조 거울 앞단의 ${\lambda}/4$ 판, 대상 물체 앞단의 ${\lambda}/4$ 판, 편광 광분배기, 이미지 센서 앞단의 편광기, 광섬유 광원 앞단의 편광기, 편광 광분배기와 광원의 편광기 사이에 위치하는 ${\lambda}/2$ 판으로 구성된다. 제안된 시스템을 이용하여, 편광을 기반으로한 간섭이미지의 대조대비를 조절할 수 있다. 2) 신호처리 고속화 방법이 간섭계 시스템을 위해 제안되며, 이는 그래픽 처리 유닛(GPU)과 같은 병렬처리 하드웨어와 계산 통합 기기 구조(CUDA)와 같은 프로그래밍 언어로 구현된다. 제안된 방법을 통해 신호처리 시간은 실시간 처리가 가능한 작업시간을 얻을 수 있었다. 최종적으로 다양한 실험을 통해 제안된 시스템을 정확도와 신호처리 시간의 관점으로 평가하였고, 실험결과를 통해 제안한 시스템이 광학측정기법의 실적용을 위해 효율적임을 보였다.

방출단층촬영 시스템을 위한 GPU 기반 반복적 기댓값 최대화 재구성 알고리즘 연구 (A Study on GPU-based Iterative ML-EM Reconstruction Algorithm for Emission Computed Tomographic Imaging Systems)

  • 하우석;김수미;박민재;이동수;이재성
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권5호
    • /
    • pp.459-467
    • /
    • 2009
  • 목적: ML-EM (The maximum likelihood-expectation maximization) 기법은 방출과 검출 과정에 대한 통계학적 모델에 기반한 재구성 알고리즘이다. ML-EM은 결과 영상의 정확성과 유용성에 있어 많은 이점이 있는 반면 반복적인 계산과 방대한 작업량 때문에 CPU(central processing unit)로 처리할 때 상당한 연산시간이 소요되었다. 본 연구에서는 GPU(graphic processing unit)의 병렬 처리 기술을 ML-EM 알고리즘에 적용하여 영상을 재구성하였다. 대상 및 방법: 엔비디아사(社)의 CUDA 기술을 이용하여 ML-EM 알고리즘의 투사 및 역투사 과정을 병렬화 전략을 구상하였으며 Geforce 9800 GTX+ 그래픽 카드를 이용하여 병렬화 연산을 수행하여 기존의 단일 CPU기반 연산법과 비교하였다. 각 반복횟수마다 투사 및 역투사 과정에 걸리는 총 지연 시간과 퍼센트 오차(percent error)를 측정하였다. 총 지연 시간에는 RAM과 GPU 메모리 간의 데이터 전송 지연 시간도 포함하였다. 결과: 모든 반복횟수에 대해 CPU 기반 ML-EM 알고리즘보다 GPU 기반 알고리즘이 더 빠른 성능을 나타내는 것을 확인하였다. 단일 CPU 및 GPU 기반 ML-EM의 32번 반복연산에 있어 각각 3.83초와 0.26초가 걸렸으며 GPU의 병렬연산의 경우 15배 정도의 개선된 성능을 보였다. 반복횟수가 1024까지 증가하였을 경우, CPU와 GPU 기반 알고리즘은 각각 18분과 8초의 연산시간이 걸렸다. GPU 기반 알고리즘이 약 135배 빠른 처리속도를 보였는데 이는 단일 CPU 계산이 특정 반복횟수 이후 나타나는 시간 지연에 따른 것이다. 결과적으로, GPU 기반 계산이 더 작은 편차와 빠른 속도를 보였다. 결론: ML-EM 알고리즘에 기초한 GPU기반 병렬 계산이 처리 속도와 안정성을 더 증진시킴을 확인하였으며 이를 활용해 다른 영상 재구성 알고리즘에도 적용시킬 수 있을 것으로 기대한다.