• Title/Summary/Keyword: CUAZ

Search Result 11, Processing Time 0.03 seconds

Effect of Copper Retention on Copper Leaching in Wood Treated with Copper-based Preservatives

  • Ra, Jong-Bum;Kang, Sung-Mo;Kang, Shin-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.421-425
    • /
    • 2009
  • This research investigates the effect of copper retention on copper leaching in wood treated with copper-based preservatives. Radiata pine (Pinus radiata D. Don) sapwood samples were ground in a Wiley mill equipped with a 20-mesh screen. The ground wood was vacuum-treated with various concentrations of alkaline copper quat (ACQ), bis-(N-cyclohexyl-diazeniumdioxy)-copper (CB-HDO), and copper azole (CUAZ). The treated samples were conditioned at $70^{\circ}C$ and 100% RH for 72 hours. The samples were leached by using the distilled water for four weeks, and the copper contents in each sample were measured by X-ray spectroscopy. As expected, the copper leaching was increased with increasing of copper retention. The copper leaching from the ACQ and CB-HDO treated samples were gradually decreased with increasing copper retention: however, the copper losses from the CUAZ treated samples appeared to be proportionally increased with the increase in copper retention in all retention levels tested. The results indicate that at the conditions of the same copper retention ACQ and CB-HDO treated wood have a better leaching resistance compared to CUAZ treated wood.

Effect of Neonicochid Type Wood Preservative on Adhesive Properties of Resorcinol Resin for Lminated Wood (네오니코치드계 목재보존제가 집성재 제조용 레조르시놀 수지의 접착력에 미치는 영향)

  • Lee, Dong Heub;Lee, Jong Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • The effect of neonicochid type wood preservatives on adhesive properties of resorcinol-formaldehyde resin for laminated wood manufacture was examined. By the previous studies, it was verified that the neonicochid type preservative has a high termite-proofing and anti-mold effectiveness. Commercial ACQ (ammoniacal copper quaternary compounds) and CUAZ (copper azol compounds) were used as comparison preservatives of effects on adhesive properties. The wood specimens used japanese red pine (Pinus densifrora) after application with preservatives and then bonded with resorcinol-formaldehyde resin. Adhesive properties were evaluated by shearing strength of adhesive bond and wood failure to dry condition or after accelerated aging test. Of all laminated woods, the wood specimens spread with ACQ or CUAZ showed the lowest shearing strength of adhesive bond. We estimated that the decrease of shearing strength was caused by copper in the ACQ or CUAZ preservatives. On the application of the neonicochid type preservatives, the wood specimens showed the highest shearing strength even after accelerated aging test. From these results, it is concluded that the copper-free neonicochid type preservative not affected the curing of resorcinol-formaldehyde resin.

Evaluation of Pretreatment Moisture Content and Fixation Characteristics of Treated Wood for Pressure Treatment of Japanese Red Pine and Japanese Larch Skin Timber with ACQ, CUAZ and CuHDO (소나무와 낙엽송 스킨팀버의 ACQ, CUAZ, CuHDO 가압처리를 위한 처리용 목재의 적정 함수율 및 처리목재의 정착 특성 평가)

  • Choi, Yong-Seok;Oh, Se-Min;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.481-489
    • /
    • 2011
  • This study was conducted to evaluate the pressure treatment characteristics of Japanese red pine and Japanese larch skin timber with ACQ-2, CUAZ-2 and CuHDO-1. The effect of moisture content (MC) on preservative treatability was investigated for Japanese red pine sapwood and Japanese larch heartwood, and fixation characteristics of CCA alternatives was also evaluated. Japanese red pine sapwood, which was dried below 30 percent MC, was fully penetrated with preservatives, and minimum requirement of preservative retention for the hazard class H3 was achieved. Through measuring preservative retention gradient in Japanese red pine sapwood, it was confirmed that the retention gradient of CuHDO-1 was steeper than that of both ACQ-2 and CUAZ-2. In particular, it was intensified at a higher MCs of wood samples (25∼30%). Japanese larch heartwood did not meet the minimum requirement of penetration and retention for the hazard class H3 over the range of pretreatment MCs tested. With presteaming under $121^{\circ}C$ for 12 hours, the treatability of Japanese larch heartwood was enhanced to meet the minimum requirement for the hazard class H3. The fixation rate of copper was much more faster under drying condition compared with nondrying condition; more than 95% of copper were fixed in 3~6 days and 1 day under drying conditions in Japanese red pine sapwood and Japanese larch heartwood, respectively. After 3-week fixation period at ambient temperature, the amount of mobile copper in treated wood sample that remains available for leaching from treated wood was the highest in the wood samples treated with ACQ-2, followed by CuHDO-1 and CUAZ-2. It was proportional to the amount of copper in treating solution.

Measurment of Copper Concentration in ACQ, CUAZ, and CB-HDO Solutions by Using a Spectrophotometer

  • Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.450-456
    • /
    • 2010
  • This research was performed to develop the simple techniques to predict the copper concentration in alkaline copper quat (ACQ), copper azole (CUAZ), and bis-(N-cyclohexyl-diazeniumdioxy)-copper (CB-HDO) solutions. Two simple methods measuring the color due to copper compounds were evaluated by using a spectrophotometer. One is to directly measure the color of the preservative solutions. The other is to measure the color developed on the surface of a treated sample with the preservatives. The $L^*$ of the measured color values appeared to be the most sensitive to the change of copper concentration. The $a^*$ values of the preservative solutions tended to be decreased at above a certain concentration condition, and the $b^*$ values showed no trend with the concentration of copper compounds in preservative solutions. The surface color of the treated samples were changed from bluish to greenish as time passed. Both methods showed the high $R^2$ values of the regression models determined by using the lightness, which suggested that the methods might be applicable in preservative-treatment mills for the easy and fast prediction of the copper concentration.

Evaluation of Pretreatment Moisture Content and Fixation Characteristics of Treated Wood for Pressure Treatment of Yellow Poplar Skin Timber with ACQ, CUAZ and CuHDO (백합나무 스킨팀버의 ACQ, CUAZ, CuHDO 가압처리를 위한 처리용 목재의 적정 함수율 및 처리목재의 정착 특성 평가)

  • Kim, Min-Ji;Choi, Yong-Seok;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.810-817
    • /
    • 2015
  • This study was conducted to evaluate the pressure treatment characteristics of yellow poplar skin timber with ACQ-2, CUAZ-3, and CuHDO-1. The effect of moisture content (MC) on treatability was investigated, and fixation characteristics of copper-based preservatives were also evaluated. Sapwood of yellow poplar, which was dried below 50 percent MC, was fully penetrated with preservatives, and minimum requirement of preservative retention for the hazard class H3 was achieved. Through measuring retention gradient in yellow poplar sapwood, it was confirmed that minimum requirement of preservative retention for the hazard class H3 was achieved in the assay zone from the surface to 15 mm-depth when the specimens were dried below 30 percent MC. Yellow poplar heartwood did not meet the minimum requirement of penetration and retention for the hazard class H3 over the range of pretreatment MCs tested. The fixation rate of copper was much faster under drying condition compared with nondrying condition; more than 90% of copper were fixed in 3 weeks at $21^{\circ}C$ under drying conditions.

The Evaluation of the Preservative Treated Plywood Produced by Factory Processing (야외사용을 목적으로 공장라인에서 생산한 방부합판의 성능평가)

  • Son, Dong Won;Lee, Sang-Min;Lee, Dong-heub;Kang, Eun-Chang;Park, Byung Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.47-54
    • /
    • 2008
  • To make up original defects of the wooden materials for decks, and to supply the wooden material for outdoor, we fabricated preservative treated plywood(PTP). Copper azole (CUAZ-1) preservative was treated with a normal full-cell process. Bond Strength of PTP was not affected after the preservative treatment. The anti-fungal efficiency and dimensional stability were obtained from PTP. A little discoloration of the surface was detected, but the dimensional change or peel bonded area off were not observed after accelerated weathering test. Although some strength of PTP was reduced after 17 months of field exposure, the PTP should be applicable for outdoor applications.

Decay Efficacies of Plywoods Manufactured by ACQ-treated Veneers of Domestic Softwood and Hardwood Species

  • Suh, Jin Suk;Lee, Hyun Mi;Hwang, Won Jung;Hwang, Sung Wook;Lee, Dong Heub;Park, Sang Bum
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.3
    • /
    • pp.233-237
    • /
    • 2014
  • The eco-friendly preservatives such as ACQ or CUAZ have been used in landscape architectural facilities these days. In this study, the decay efficacies of ACQ treatments were evaluated according to domestic veneer species, concentration of ACQ, weathering test, adhesive type, and fungus type. In case of veneer species, hinoki cypress and yellow poplar showed the highest and lowest decay resistance, respectively. And the decay resistance appeared to be greater in plywoods bonded by resorcinol resin-bonded plywood and non-weathering treated plywood than polyurethane resin-bonded plywood and weathering treated plywood.

  • PDF

Strength Properties of Wooden Model Erosion Control Dams Using Domestic Pinus rigida Miller I (국내산 리기다소나무를 이용한 목재 모형 사방댐의 강도 성능 평가 I)

  • Kim, Sang-Woo;Park, Jun-Chul;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.77-87
    • /
    • 2008
  • Wooden model erosion control dam was made with pitch pine, of which the strength properties was evaluated. Wooden model erosion control dam was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole), changing joint in three different types. In each type, erosion control dam was made in nine floor (cross-bar of five floors and vertical-bar of four floors), of which the hight was 790 mm. And then strength properties were investigated through horizontal loading test and impact strength test, and the deformation of structure through image processing (AICON 3D DPA-PRO system). In horizontal loading test of wooden model erosion control dam using round post of diameter 90 mm, whether there was stone or not did not affect strength much when using self drill screw, but strength was decreased by 23%. In monolithic type of erosion control dam using screw bar, strength was increased by 1.5 times and deformation was decreased when filling with stone. When reinforcing with screw bar that ring is connected to self drill screw, strength was increased by 4.8 times. In impact strength test of wooden model erosion control dam made with round post of diameter 90 mm, the erosion control dam connected with self drilling screw not filling with stone was totally destroyed by the 1st impact, and the erosion control dam using screw bar was ruptured at cross-bar at which 779 kgf of impact was loaded in the 1st impact. In the 2nd impact, the base parts were ruptured, and reaction force was decreased to 545 kgf. In the 3rd impact, whole base parts were destroyed, and reaction force was decreased to 263 kgf.

Strength Properties of Wooden Model Retaining Wall Using Preservative Treated Square Timber of Domestic Pinus rigida Miller (리기다소나무 방부 정각재를 이용한 목재 옹벽의 강도 성능 평가)

  • Park, Jun-Chul;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.532-540
    • /
    • 2010
  • The strength properties of wooden model retaining wall made of pitch pine (Pinus rigida Miller) was evaluated. Three different types of wooden model retaining wall were made of the 11cm square timber treated with CUAZ-2 (Copper Azole). The retaining wall was made into the 4 layers of crossbar and the 3 layers of vertical-bar, of which the size was 86 cm high, 200 cm long and 96 cm wide. Type I was control and in Type II 20 cm vertical-bars and 93 cm vertical-bars were arranged alternately to decrease wood usage. TypeIII was similar to TypeII except that the connection between crossbars was reinforced with the wooden armature. In each type, the strength properties of retaining wall were investigated by horizontal loading test and the deformation of structure by image processing (AICON 3D DPA-PRO system). In horizontal loading test of Type I, Type II and Type III was 63.17, 57.80, and 60.97 kN/m, respectively. The deformation of the top layer in Type II was 1.5 times larger than in Type I and Type III. Consequently, the economic efficiency and strength performance were better in Type III than in Type I and Type II.

Strength Properties of Wooden Retaining Walls Manufactured with Pinus rigida Miller

  • Park, Jun-Chul;Kim, Keon-Ho;Lee, Dong-Heub;Son, Dong-Won;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.140-147
    • /
    • 2011
  • The strength properties of wooden retaining wall which was made with pitch pine were evaluated. Wooden retaining wall was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole). The length of the front stretcher of the retaining wall was 3,000 mm. The distance between the headers (the notched member) is 1,000 mm in center and is 900 mm in side. There were connections every 2,000 mm because actually the length of stretcher is limited in the retaining wall. The strength test was carried out according to connection type because the section between stretchers can act as a defect. A result of the strength test according to connection type confirms that connection does not act as defect because the strength of retaining wall in single stretcher is similar to that in the section between stretchers. The strength test of the wooden retaining wall was carried out in 5 types according to the condition of the base section. When the upper soil pressure was 9.8 kN/$m^2$, the maximum load of the retaining wall fixing the front foundation shows higher values than those of others. But the total deformation is lower in the retaining wall not to fix a base section than in that to fix a base section. It is thought that the retaining wall not to fix a base section shows low value because the deformation is distributed throughout the retaining wall and it is confirmed that the soil pressure affects supporting the structure because the deformation of the retaining wall under low pressure is 3~4 fold higher than those of others. The failure mode of the retaining wall is the overturning type because the high section is deformed. Mostly, the failure mode is the separation of the header in the notched section.