• Title/Summary/Keyword: CT26 cell

Search Result 96, Processing Time 0.022 seconds

Studies on the Antitumor Activity of Gamisoam-san via Suppressing Angiogenesis and Growth Factor Expression (혈관신생 및 이식암세포증식 억제를 통한 가미소암산의 항암작용연구)

  • Yoon Sung Chan;Ahn Seong Hun;Mun Yean Ja;Kim Jin Kyeong;Choo Young Kug;Jung Kyu Yong;Kim Yeong Mok;Woo Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.969-979
    • /
    • 2003
  • Gamisoamsan is a prescription originated in Soamsan which is known as an anti-cancer remedy in the traditional Korean Medicine. To enhance the synergic effects of anti-cancer activity of Soamsan, this study reconstituted the original components of Soamsan with a slight modification and produced a novel herbal remedy, namely Gamisoamsan. To investigate the effects of Gamisoamsan on anti-cancer reaction, I studied the effects of Gamisoamsan on angiogenesis via chorioallantoic membrane (CAM) assay, corneal neovascularization assay and the effects on expression of growth factor which are VEGF, TGF-β, bFGF and IMUP-1. Anti-cancer effects of Gamisoamsan was also abserved through hematological parameters, tumor volume and survival rate in mice. Gamisoamsan inhibited embryonic angiogenesis of blood vessels in CAM assay and inhibited neovascularization of ral cornea. Gamisoamsan reduced cell proliferation in HT1080 cells and IC50 was 2.18 ㎎/㎖ Gamisoamsan reduced the expression of VEGF, TGF-β, bFGF and IMUP-1 which was known as vascular growth factor and this effects of Gamisoamsan was predominant than VP-16. The treatment of Gamisoamsan decreased the CT-26 cell inoculated-tumor volume in mice colon adenocarcinoma and increased mice survival which was inoculated CT-26 cells. The results of the present study suggest that Gamisoamsan extracts has a potential anti-tumor activity and may be an useful remedy to prevent and/or treat cancer.

HOCl Oxidation-modified CT26 Cell Vaccine Inhibits Colon Tumor Growth in a Mouse Model

  • Zhou, Rui;Huang, Wen-Jun;Ma, Cong;Zhou, Yan;Yao, Yu-Qin;Wang, Yu-Xi;Gou, Lan-Tu;Yi, Chen;Yang, Jin-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4037-4043
    • /
    • 2012
  • Despite progress in elucidating mechanisms associated with colorectal cancer and improvement of treatment methods, it remains a frequent cause of death worldwide. New and more effective therapies are therefore urgently needed. Recent studies have shown that immunogenicity of whole ovarian tumor cells and subsequent T cell response were potentiated by oxidation modification with hypochlorous acid (HOCl) in vitro and ex vivo. These results prompted us to investigate the protective antitumor response with an HOCl treated CT26 colorectal cancer cell vaccine in an in vivo mouse model. Administration of HOCl modified vaccine triggered robust antitumor immunity to autologous tumor cells in mice and prolonged survival period significantly. In addition, increased necrosis and apoptosis were found in tumor tissue from the oxidation group. Interestingly, ELISPOT assays showed that specific T cell responses were not elicited in response to the immunizing cellular antigen, in contrast to raising sera antibody titer and antibody binding activity shown by ELISA assay and flow cytometry. Further evaluation of the mechanisms underlying HOCl modified vaccine mediated humoral immunity highlighted the role of antibody-dependent cell-mediated cytotoxicity. These results combined with previous studies suggest that HOCl oxidation modified whole cell vaccine has wide applicability as a cancer vaccine because it can target both T cell- and B cell-specific responses. It may thus represent a promising approach for the immunotherapy of colorectal cancer.

The Effect of Lipopolysaccharide on Noxa Expression Is Mediated through IRF1, 3, and 7

  • Piya, Sujan;Kim, Tae-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.491-497
    • /
    • 2018
  • Lipopolysaccharide (LPS), a component of the cell wall of gram-negative bacteria, elicits the secretion of cytokines, such as interferons, that stimulate the host defense system. Previously, we demonstrated that interferons induce interferon regulatory factors (IRFs) 1, 3, and 7, which regulate the transcription of Noxa and alter the expression profiles of Bcl-2 family proteins in tumors. However, the immediate consequences of LPS stimulation on Noxa and BH3 expression in tumor cells remain uncharacterized. In this study, we determined that LPS induced Noxa expression in CT26 cells. Furthermore, studies in HCT116 parental and HCT116 p53-deficient cells revealed that LPS-mediated Noxa was independent of p53. Meanwhile, IRF1, 3, and 7 in CT26, HCT116 parental, and HT116 p53-deficient cells were upregulated by LPS stimulation, suggesting that LPS induces the expression of these IRFs in a p53-independent manner. The responsiveness of IRF1, 3, 4, and 7 binding to the Noxa promoter region to LPS indicated that IRF1, 3, and 7 activated Noxa expression, whereas IRF4 repressed Noxa expression. Together, these results suggest that LPS directly affects Noxa expression in tumor cells through IRFs, implicating that it may contribute to LPS-induced tumor regression.

Diagnostic Performance of 18F-Fluorodeoxyglucose Positron Emission Tomography/CT for Chronic Empyema-Associated Malignancy

  • Miju Cheon;Jang Yoo;Seung Hyup Hyun;Kyung Soo Lee;Hojoong Kim;Jhingook Kim;Jae Il Zo;Young Mog Shim;Joon Young Choi
    • Korean Journal of Radiology
    • /
    • v.20 no.8
    • /
    • pp.1293-1299
    • /
    • 2019
  • Objective: The purpose of this study was to evaluate the diagnostic performance of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for chronic empyema-associated malignancy (CEAM). Materials and Methods: We retrospectively reviewed the 18F-FDG PET/CT images of 33 patients with chronic empyema, and analyzed the following findings: 1) shape of the empyema cavity, 2) presence of fistula, 3) maximum standardized uptake value (SUV) of the empyema cavity, 4) uptake pattern of the empyema cavity, 5) presence of a protruding soft tissue mass within the empyema cavity, and 6) involvement of adjacent structures. Final diagnosis was determined based on histopathology or clinical follow-up for at least 6 months. The abovementioned findings were compared between the 18F-FDG PET/CT images of CEAM and chronic empyema. A receiver operating characteristic (ROC) analysis was also performed. Results: Six lesions were histopathologically proven as malignant; there were three cases of diffuse large B-cell lymphoma, two of squamous cell carcinoma, and one of poorly differentiated carcinoma. Maximum SUV within the empyema cavity (p < 0.001) presence of a protruding soft tissue mass (p = 0.002), and involvement of the adjacent structures (p < 0.001) were significantly different between the CEAM and chronic empyema images. The maximum SUV exhibited the highest diagnostic performance, with the highest specificity (96.3%, 26/27), positive predictive value (85.7%, 6/7), and accuracy (97.0%, 32/33) among all criteria. On ROC analysis, the area under the curve of maximum SUV was 0.994. Conclusion: 18F-FDG PET/CT can be useful for diagnosing CEAM in patients with chronic empyema. The maximum SUV within the empyema cavity is the most accurate 18F-FDG PET/CT diagnostic criterion for CEAM.

ACE, α-Glucosidase and Cancer Cell Growth Inhibitory Activities of Extracts and Fractions from Marine Microalgae, Nannochloropsis oculata (해양 미세조류 Nannochloropsis oculata 추출.분획물의 ACE, α-glucosidase 및 암세포 저해 활성)

  • Cha, Seon-Heui;Kim, Min-Joo;Yang, Hye-Young;Jin, Chang-Beum;Jeon, You-Jin;Oda, Tatsuya;Kim, Dae-Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.437-444
    • /
    • 2010
  • Extracts of the marine microalgae Nannochloropsis oculata were obtained using 80% methanol (MeOH) and water. The 80% MeOH extract was further fractionated with n-hexane, chloroform, ethyl acetate (EtOAc), n-butanol (n-BuOH), and water to isolate the active fraction. Seven samples were prepared and their angiotensin converting enzyme (ACE), $\alpha$-glucosidase, and cancer cell growth inhibitory activities in vitro were determined. The most profound ACE inhibitory activity was observed in the chloroform fraction, while the others had moderate effects. By contrast, greater $\alpha$-glucosidase inhibitory activity was found in the EtOAc fraction, n-hexane fraction, and water extract of N. oculata. The antiproliferative effects of the extracts and fractions against HL-60, U937, CT-26, and SK-Hep1 cancer cells were also determined. The n-BuOH fraction had the strongest antiproliferative effects on CT-26 cells in a time-dependant manner (P<0.05). These results suggest that the extracts and fractions from N. oculata could be used as a potential functional food or as pharmaceutical ingredients.

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.

Ginsenoside Rg1 Induces Autophagy in Colorectal Cancer through Inhibition of the Akt/mTOR/p70S6K Pathway

  • Ruiqi Liu;Bin Zhang;Shuting Zou;Li Cui;Lin, Lin;Lingchang Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.774-782
    • /
    • 2024
  • This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.

Anti-tumor Effects of Penfluridol through Dysregulation of Cholesterol Homeostasis

  • Wu, Lu;Liu, Yan-Yang;Li, Zhi-Xi;Zhao, Qian;Wang, Xia;Yu, Yang;Wang, Yu-Yi;Wang, Yi-Qin;Luo, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.489-494
    • /
    • 2014
  • Background: Psychiatric patients appear to be at lower risk of cancer. Some antipsychotic drugs might have inhibitory effects on tumor growth, including penfluridol, a strong agent. To test this, we conducted a study to determine whether penfluridol exerts cytotoxic effects on tumor cells and, if so, to explore its anti-tumor mechanisms. Methods: Growth inhibition of mouse cancer cell lines by penfluridol was determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cytotoxic activity was determined by clonogenic cell survival and trypan blue assays. Animal tumor models of these cancer cells were established and to evaluate penfluridol for its anti-tumor efficacy in vivo. Unesterified cholesterol in cancer cells was examined by filipin staining. Serum total cholesterol and tumor total cholesterol were detected using the cholesterol oxidase/p-aminophenazone (CHOD-PAP) method. Results: Penfluridol inhibited the proliferation of B16 melanoma (B16/F10), LL/2 lung carcinoma (LL/2), CT26 colon carcinoma (CT26) and 4T1 breast cancer (4T1) cells in vitro. In vivo penfluridol was particularly effective at inhibiting LL/2 lung tumor growth, and obviously prolonged the survival time of mice bearing LL/2 lung tumors implanted subcutaneously. Accumulated unesterified cholesterol was found in all of the cancer cells treated with penfluridol, and this effect was most evident in LL/2, 4T1 and CT26 cells. No significant difference in serum cholesterol levels was found between the normal saline-treated mice and the penfluridol-treated mice. However, a dose-dependent decrease of total cholesterol in tumor tissues was observed in penfluridol-treated mice, which was most evident in B16/F10-, LL/2-, and 4T1-tumor-bearing mice. Conclusion: Our results suggested that penfluridol is not only cytotoxic to cancer cells in vitro but can also inhibit tumor growth in vivo. Dysregulation of cholesterol homeostasis by penfluridol may be involved in its anti-tumor mechanisms.

The Biologic Effect of Millimeter Wave Irradiation Followed to Photodynamic Therapy on the Tumor

  • Ahn, Jin-Chul;Lee, Chang-Sook;Chang, So-Young;Yoon, Sung-Chul
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.79-84
    • /
    • 2011
  • Photodynamic therapy consists of a photosensitizer, suitable light source and oxygen. The excitation of the photosensitizer at a cancer mass results in oxidation which would ultimately reduce the mass via apoptosis. Millimeter wave (MMW) therapy has also been known to be effective on cancer cell mass reduction, human cell regeneration and immunity enhancement among the Russian clinicians and scientists. In the present study, the two modalities were combined to achieve synergistic effects while reducing the administration dosage of the photosensitizer, photogem, thus minimizing the side effects. The CT-26 adenocarcinoma cell mass was implanted on mice and the tumors were exposed to a simple MMW irradiation or a combined treatment of MMW and PDT. The treatments continued for 4 weeks and the size of the tumor was measured continuously. The significant therapeutic result of MMW was not found during 4 weeks, preferably more cancer recurrence possibility after MMW irradiation was observed. The results of this study suggest that the combination of MMW irradiation and photodynamic treatment should not be recommended. The result of the MMW treatment alone, however, displayed suppressive effect on cancer cell proliferation for both in vitro and in vivo. The results of the present study suggest that the millimeter wave therapy deserves a further study.

Comparison of CXCL10 Secretion in Colorectal Cancer Cell Lines

  • Lee, Song Mi;Lee, Ji Eun;Ahn, Hye Rim;Choi, Myung Hyun;Yoon, Seo Young;Rhee, Man Hee;Baik, Ji Sue;Seo, You Na;Park, Moon-Taek;Kim, Sung Dae
    • Biomedical Science Letters
    • /
    • v.28 no.3
    • /
    • pp.200-205
    • /
    • 2022
  • Established cancer cell lines are widely used for developing biomarkers for the patient-specific treatment of colorectal cancer and predicting prognoses. However, cancer cell lines may exhibit different drug responses depending upon the characteristics of the cell line. Therefore, it is necessary to select a tumor cell line suitable for the purpose of the study by considering the cell characteristics. This study investigated the levels of CXCL10, which were recently been reported to play an important role in the outcome of tumor treatment, secreted by colon cancer cells. 2 × 105 cells/mL of each colorectal cancer cell was seeded into a 35 mm cell culture dish. After 24 h incubation, culture supernatant was used to determine the secreted CXCL10 levels. Among six colorectal cancer cell lines (HT-29, HCT116, CaCo-2, SW620, SW480, and CT26), Caco-2 cells showed the highest level of CXCL10 secretion. HT-29 cells showed the second-highest level of CXCL10 secretion. No significantly measurable level of CXCL10 secretion was detected in HCT116 cells. These results will be helpful in investigating the molecular basis of colorectal cancer.