DOI QR코드

DOI QR Code

Comparison of CXCL10 Secretion in Colorectal Cancer Cell Lines

  • Lee, Song Mi (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Lee, Ji Eun (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Ahn, Hye Rim (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Choi, Myung Hyun (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Yoon, Seo Young (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Rhee, Man Hee (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University) ;
  • Baik, Ji Sue (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Seo, You Na (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Park, Moon-Taek (Research Center, Dongnam Institute of Radiological & Medical Sciences) ;
  • Kim, Sung Dae (Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University)
  • Received : 2022.08.24
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

Established cancer cell lines are widely used for developing biomarkers for the patient-specific treatment of colorectal cancer and predicting prognoses. However, cancer cell lines may exhibit different drug responses depending upon the characteristics of the cell line. Therefore, it is necessary to select a tumor cell line suitable for the purpose of the study by considering the cell characteristics. This study investigated the levels of CXCL10, which were recently been reported to play an important role in the outcome of tumor treatment, secreted by colon cancer cells. 2 × 105 cells/mL of each colorectal cancer cell was seeded into a 35 mm cell culture dish. After 24 h incubation, culture supernatant was used to determine the secreted CXCL10 levels. Among six colorectal cancer cell lines (HT-29, HCT116, CaCo-2, SW620, SW480, and CT26), Caco-2 cells showed the highest level of CXCL10 secretion. HT-29 cells showed the second-highest level of CXCL10 secretion. No significantly measurable level of CXCL10 secretion was detected in HCT116 cells. These results will be helpful in investigating the molecular basis of colorectal cancer.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea grant funded by the Korean government (MSIP) (2022R1A2C1011767 and DIRAMS 50591-2022).

References

  1. Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J, Tabah-Fisch I, de Gramont A. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004. 350: 2343-2351. https://doi.org/10.1056/NEJMoa032709
  2. Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, Bonetti A, Clingan P, Bridgewater J, Rivera F, de Gramont A. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage ii or iii colon cancer in the mosaic trial. J Clin Oncol. 2009. 27: 3109-3116. https://doi.org/10.1200/JCO.2008.20.6771
  3. Aronica SM, Raiber L, Hanzly M, Kisela C. Antitumor/antiestrogenic effect of the chemokine interferon inducible protein 10 (ip-10) involves suppression of vegf expression in mammary tissue. J Interferon Cytokine Res. 2009. 29: 83-92. https://doi.org/10.1089/jir.2008.0034
  4. Ashraf SQ, Nicholls AM, Wilding JL, Ntouroupi TG, Mortensen NJ, Bodmer WF. Direct and immune mediated antibody targeting of erbb receptors in a colorectal cancer cell-line panel. Proc Natl Acad Sci U S A. 2012. 109: 21046-21051. https://doi.org/10.1073/pnas.1218750110
  5. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012. 483: 603-607. https://doi.org/10.1038/nature11003
  6. Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S, Bracha AL, Liefeld T, Wawer M, Gilbert JC, Wilson AJ, Stransky N, Kryukov GV, Dancik V, Barretina J, Garraway LA, et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell. 2013. 154: 1151-1161. https://doi.org/10.1016/j.cell.2013.08.003
  7. Bracht K, Nicholls AM, Liu Y, Bodmer WF. 5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency. Br J Cancer. 2010. 103: 340-346. https://doi.org/10.1038/sj.bjc.6605780
  8. Datta D, Flaxenburg JA, Laxmanan S, Geehan C, Grimm M, Waaga-Gasser AM, Briscoe DM, Pal S. Ras-induced modulation of cxcl10 and its receptor splice variant cxcr3-b in mdamb-435 and mcf-7 cells: Relevance for the development of human breast cancer. Cancer Res. 2006. 66: 9509-9518. https://doi.org/10.1158/0008-5472.CAN-05-4345
  9. de Both NJ, Vermeij M, Dinjens W, Bosman FT. A comparative evaluation of various invasion assays testing colon carcinoma cell lines. British Journal of Cancer. 1999. 81: 934-941. https://doi.org/10.1038/sj.bjc.6690790
  10. Duranton B, Holl V, Schneider Y, Carnesecchi S, Gosse F, Raul F, Seiler N. Polyamine metabolism in primary human colon adenocarcinoma cells (sw480) and their lymph node metastatic derivatives (sw620). Amino Acids. 2003. 24: 63-72. https://doi.org/10.1007/s00726-002-0333-5
  11. Duruisseaux M, Rabbe N, Antoine M, Vieira T, Poulot V, Cadranel J, Wislez M. Pro-tumoural cxcl10/cxcr3-a autocrine loop in invasive mucinous lung adenocarcinoma. ERJ Open Res. 2017. 3.
  12. Gill S, Loprinzi CL, Sargent DJ, Thome SD, Alberts SR, Haller DG, Benedetti J, Francini G, Shepherd LE, Francois Seitz J, Labianca R, Chen W, Cha SS, Heldebrant MP, Goldberg RM. Pooled analysis of fluorouracil-based adjuvant therapy for stage ii and iii colon cancer: Who benefits and by how much? J Clin Oncol. 2004. 22: 1797-1806. https://doi.org/10.1200/JCO.2004.09.059
  13. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon carcinoma cell line (caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989. 96: 736-749. https://doi.org/10.1016/S0016-5085(89)80072-1
  14. Jiang Z, Xu Y, Cai S. Cxcl10 expression and prognostic significance in stage ii and iii colorectal cancer. Mol Biol Rep. 2010. 37: 3029-3036. https://doi.org/10.1007/s11033-009-9873-z
  15. Kikuchi N, Ye J, Hirakawa J, Kawashima H. Forced expression of cxcl10 prevents liver metastasis of colon carcinoma cells by the recruitment of natural killer cells. Biol Pharm Bull. 2019. 42: 57-65. https://doi.org/10.1248/bpb.b18-00538
  16. Kim KJ, Na YK, Hong HS. Effects of progressive muscle relaxation therapy in colorectal cancer patients. West J Nurs Res. 2016. 38: 959-973. https://doi.org/10.1177/0193945916635573
  17. Lopez P, Gonzalez-Rodriguez I, Sanchez B, Ruas-Madiedo P, Suarez A, Margolles A, Gueimonde M. Interaction of bifidobacterium bifidum lmg13195 with ht29 cells influences regulatory-t-cell-associated chemokine receptor expression. Appl Environ Microbiol. 2012. 78: 2850-2857. https://doi.org/10.1128/AEM.07581-11
  18. Lambert LE, Paulnock DM. Modulation of macrophage function by gamma-irradiation. Acquisition of the primed cell intermediate stage of the macrophage tumoricidal activation pathway. J Immunol. 1987. 139: 2834-2841. https://doi.org/10.4049/jimmunol.139.8.2834
  19. Liu M, Guo S, Stiles JK. The emerging role of cxcl10 in cancer (review). Oncol Lett. 2011. 2: 583-589. https://doi.org/10.3892/ol.2011.300
  20. Medina C, Jurasz P, Santos-Martinez MJ, Jeong SS, Mitsky T, Chen R, Radomski MW. Platelet aggregation-induced by caco-2 cells: Regulation by matrix metalloproteinase-2 and adenosine diphosphate. J Pharmacol Exp Ther. 2006. 317: 739-745. https://doi.org/10.1124/jpet.105.098384
  21. Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, Arango D, Strausberg RL, Buchanan D, Wormald S, O'Connor L, Wilding JL, Bicknell D, Tomlinson IP, Bodmer WF, Mariadason JM, Sieber OM. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014. 74: 3238-3247.
  22. Nakurte I, Jekabsons K, Rembergs R, Zandberga E, Abols A, Line A, Muceniece R. Colorectal cancer cell line sw480 and sw620 released extravascular vesicles: Focus on hypoxia-induced surface proteome changes. Anticancer Res. 2018. 38: 6133-6138. https://doi.org/10.21873/anticanres.12965
  23. Ohmori Y, Wyner L, Narumi S, Armstrong D, Stoler M, Hamilton TA. Tumor necrosis factor-alpha induces cell type and tissue-specific expression of chemoattractant cytokines in vivo. Am J Pathol. 1993. 142: 861-870.
  24. Olejniczak A, Szarynska M, Kmiec Z. In vitro characterization of spheres derived from colorectal cancer cell lines. Int J Oncol. 2018. 52: 599-612.
  25. Poeta M, Cioffi V, Buccigrossi V, Nanayakkara M, Baggieri M, Peltrini R, Amoresano A, Magurano F, Guarino A. Diosmectite inhibits the interaction between sars-cov-2 and human enterocytes by trapping viral particles, thereby preventing nf-kappab activation and cxcl10 secretion. Sci Rep. 2021. 11: 21725. https://doi.org/10.1038/s41598-021-01217-2
  26. Qian C, An H, Yu Y, Liu S, Cao X. Tlr agonists induce regulatory dendritic cells to recruit th1 cells via preferential ip-10 secretion and inhibit th1 proliferation. Blood. 2007. 109: 3308-3315. https://doi.org/10.1182/blood-2006-08-040337
  27. Schcolnik-Cabrera A, Dominguez-Gomez G, Chavez-Blanco A, Ramirez-Yautentzi M, Morales-Barcenas R, Chavez-Diaz J, Taja-Chayeb L, Dueaas-Gonzalez A. A combination of inhibitors of glycolysis, glutaminolysis and de novo fatty acid synthesis decrease the expression of chemokines in human colon cancer cells. Oncol Lett. 2019. 18: 6909-6916.
  28. Shin SY, Hyun J, Lim Y, Lee YH. 3'-chloro-5,7-dimethoxyisoflavone inhibits tnfα-induced cxcl10 gene transcription by suppressing the nf-κb pathway in hct116 human colon cancer cells. Int Immunopharmacol. 2011. 11: 2104-2111. https://doi.org/10.1016/j.intimp.2011.09.003
  29. Siekmann W, Tina E, Von Sydow AK, Gupta A. Effect of lidocaine and ropivacaine on primary (sw480) and metastatic (sw620) colon cancer cell lines. Oncol Lett. 2019. 18: 395-401.
  30. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. Cxcl9, cxcl10, cxcl11/cxcr3 axis for immune activation - a target for novel cancer therapy. Cancer Treat Rev. 2018. 63: 40-47. https://doi.org/10.1016/j.ctrv.2017.11.007
  31. Umansky V, Sevko A. Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron. 2013. 6: 169-177. https://doi.org/10.1007/s12307-012-0126-7
  32. Van Cutsem E, Labianca R, Bodoky G, Barone C, Aranda E, Nordlinger B, Topham C, Tabernero J, Andre T, Sobrero AF, Mini E, Greil R, Di Costanzo F, Collette L, Cisar L, Zhang X, Khayat D, Bokemeyer C, Roth AD, Cunningham D. Randomized phase iii trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage iii colon cancer: Petacc-3. J Clin Oncol. 2009. 27: 3117-3125. https://doi.org/10.1200/JCO.2008.21.6663
  33. Wang LL, Chen P, Luo S, Li J, Liu K, Hu HZ, Wei YQ. Cxc-chemokine-ligand-10 gene therapy efficiently inhibits the growth of cervical carcinoma on the basis of its anti-angiogenic and antiviral activity. Biotechnol Appl Biochem. 2009. 53: 209-216.
  34. Wang P, Yang X, Xu W, Li K, Chu Y, Xiong S. Integrating individual functional moieties of cxcl10 and cxcl11 into a novel chimeric chemokine leads to synergistic antitumor effects: A strategy for chemokine-based multi-target-directed cancer therapy. Cancer Immunol Immunother. 2010. 59: 1715-1726. https://doi.org/10.1007/s00262-010-0901-6
  35. Wang Z, Ao X, Shen Z, Ao L, Wu X, Pu C, Guo W, Xing W, He M, Yuan H, Yu J, Li L, Xu X. Tnf-α augments cxcl10/cxcr3 axis activity to induce epithelial-mesenchymal transition in colon cancer cell. Int J Biol Sci. 2021. 17: 2683-2702. https://doi.org/10.7150/ijbs.61350
  36. Weickhardt AJ, Price TJ, Chong G, Gebski V, Pavlakis N, Johns TG, Azad A, Skrinos E, Fluck K, Dobrovic A, Salemi R, Scott AM, Mariadason JM, Tebbutt NC. Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: Preclinical evaluation and results of the phase ii dux study in chemotherapy-refractory, advanced colorectal cancer. J Clin Oncol. 2012. 30: 1505-1512. https://doi.org/10.1200/JCO.2011.38.6599
  37. Wightman SC, Uppal A, Pitroda SP, Ganai S, Burnette B, Stack M, Oshima G, Khan S, Huang X, Posner MC, Weichselbaum RR, Khodarev NN. Oncogenic cxcl10 signalling drives metastasis development and poor clinical outcome. Br J Cancer. 2015. 113: 327-335. https://doi.org/10.1038/bjc.2015.193
  38. Xu Y, Zhang L, Wang Q, Zheng M. Comparison of different colorectal cancer with liver metastases models using six colorectal cancer cell lines. Pathol Oncol Res. 2020. 26: 2177-2183. https://doi.org/10.1007/s12253-020-00805-3
  39. Zara M, Canobbio I, Visconte C, Canino J, Torti M, Guidetti GF. Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells. Cell Signal. 2018. 48: 45-53. https://doi.org/10.1016/j.cellsig.2018.04.008
  40. Zhu G, Yan HH, Pang Y, Jian J, Achyut BR, Liang X, Weiss JM, Wiltrout RH, Hollander MC, Yang L. Cxcr3 as a molecular target in breast cancer metastasis: Inhibition of tumor cell migration and promotion of host anti-tumor immunity. Oncotarget. 2015. 6: 43408-43419. https://doi.org/10.18632/oncotarget.6125