• Title/Summary/Keyword: CT scanning

Search Result 369, Processing Time 0.026 seconds

Obesity Estimation of Abdominal Fat by Using Computed Tomography : Influence of Breathing Motion on The Fat Measurement (전산화단층영상을 이용한 복부 지방 계측법에서 호흡운동이 비만도 측정에 미치는 영향)

  • Seoung, Youl-Hun
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • The purpose of this study was to evaluate how much effect to accuracy when measuring abdominal fat by Computed Tomography (CT) under different respiration movements. The study volunteer composed of 66 normal adults ($50.4{\pm}11.2$ years, 33 males, 33 females). We measured their obesity by using Broca index, body mass index (BMI) and CT and have investigated the correlation. The CT scanning for the obesity measurement have done in two ways, one was done in stopping breath after exhaling and the other was holding a breath after inhaling. The results showed no statistically significant difference among the three measuring techniques. And, the error in two ways of inhaling and exhaling was showed 24.2% of volunteers. The two ways of respiration movements made different result in visceral fat area (P = 0.044), subcutaneous fat area (P = 0.636) and abdominal obesity value (P = 0.012). This study demonstrates that the two ways of respiration movements when scanning CT makes change in accuracy in visceral fat area, and in abdominal obesity quantitative measure. Therefore, our study suggests that CT should take twice in two ways while a patient stops breath after exhaling and holds a breath after inhaling when measuring abdominal obesity using CT equipments.

Analysis of Orientation and Distribution of Steel Fiber in Fiber Reinforced Concrete Column by Micro-CT Scanning (Micro-CT 스캐닝을 통한 섬유보강 콘크리트 기둥내부 강섬유의 배향성 및 위치분포 분석)

  • Park, Tae-Hoon;Suh, Heong-Won;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.23-24
    • /
    • 2019
  • In this study, analysis of steel fiber orientation and distribution inside fiber reinforced concrete was performed using micro-CT scanning technology. Samples were extracted from the column according to its height and distance from the mold. Samples were scanned in order to attain the image of steel fibers then region of interest were obtained by binarization process. By calculating the principle moment of inertia of each fiber, direction vector, scale, center postion, volume, and surface area were gained in order to analyze the orientation and distribution. Most of the fibers inside the column tended to be perpendicular to the main axis of the column. Moreover, most of the fibers appeared at the bottom of the column and at the position where it is farthest from the mold.

  • PDF

Radiation Dose using Chest CT for Patients with Pneumoconiosis Complication - Comparison with International Guidelines - (진폐요양환자의 흉부 CT촬영에 사용된 선량 - 국내외 진단 참고 준위와 비교 -)

  • Lee, Won-Jeong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.206-212
    • /
    • 2014
  • We report here on the results of evaluating the radiation doses using chest computed tomography (CT) for patients with pneumoconiosis complication. For the first time, we visited the 17 MIPs to evaluate the dose-length product (DLP, $mGy{\cdot}cm$), CT unit, and protocols of scanning and image reconstruction those is routinely used for treating patients with pneumoconiosis who have complication. All statistical analysis was performed using the Statistical Program for Social Sciences (SPSS ver. 19.0, Chicago, IL, USA). Mean of total DLP was $727.7mGy{\cdot}cm$, ranging from 272.0 to $1228.7mGy{\cdot}cm$. DLP from obtaining parenchymal lung images was significantly reduced than that from obtaining total lung images (555.9 vs. 707.2, p<0.001). Third quartile of total and pre-scanning DLP was 1036.1 and $504.1mGy{\cdot}cm$, respectively. Chest CT radiation doses for patients with pneumoconiosis complication are similar with korean diagnostic reference level as well as international guidelines.

The Effectiveness of CT and MRI Contrast Agent for SUV in 18F-FDG PET/CT Scanning (18F-FDG PET/CT 검사에서 정량분석에 관한 CT와 MRI 조영제의 효과)

  • Cha, Sangyoung;Cho, Yonggwi;Lee, Yongki;Song, Jongnam;Choi, Namgil
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • In this study, among various factors having influence on SUV, we intended to compare and analyze the change of SUV using CT(4 type) and MRI(3 type) contrast agents which are commercialized now. We used Discovery 690 PET/CT(GE) and NEMA NU2 - 1994 PET phantom as experimental equipment. We have conducted a study as follows; first, we filled distilled water to phantom about two-thirds and injected radioisotope(18F-FDG 37 MBq), contrast agent. Second, we mixed CT contrast agent with distilled water and MRI contrast agent with that water separately. And then, we stirred the fluid and filled distilled water fully not to make air bubble. In emission scan, we had 15minutes scanning time after 40 minutes mixing contrast agent with distilled water. In transmission scan, we used CT scanning and its measurement conditions were tube voltage 120 kVp, tube current 40 mA, rotation time 0.5 sec, slice thickness 3.27 mm, DFOV 30 cm. Analyzing results, we set up some ROIs in 10th, 15th, 20th, 25th, 30th slice and measured SUVmean, SUVmax. Consequently, all images mixed 3 types of MRI contrast agent with distilled water have high SUVmean as compared with pure FDG image but there was no statistical significance. In SUVmax, they have high score and there was statistical significance. And other 4 images mixed 4 types of CT contrast agent with distilled water have significance in both SUVmean and SUVmax. Attenuation correction in PET/CT has been executed through various methods to make high quality image. But we figured out that using CT and MRI contrast agents before PET/CT scanning could make distortion of image and decrease diagnostic value. In that reason, we have to sort out the priority of examination in hospital not to disturb other examination's results. Through this process, we will be able to give superior medical service to our customers.

The Remodeling of the Posterior Edentulous Mandible as Illustrated by Computed Tomography (전산화 단층사진술에 의해 예증된 구치부 무치악 하악골의 골개조)

  • Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • Purpose: The aim of this study was to analyze radiologically the location and course of the mandibular canal and to observe the alveolar and basal bone changes during the remodeling procedures of atrophic mandible. Materials and Methods: CT scanning was performed on dry 30 edentulous or partially dentulous mandibles. In 48 edentulous lower halves, measuring areas were determined by three points in the length of the mandibular canal. The distance from the mandibular canal towards cranial and caudal edges, buccal and lingual external borders of the body of the mandible were measured. A statistical comparison between the mean values of different classes of mandibular body was carried out in the selected areas. Results: The distance between the mandibular canal and caudal borders of the body of the mandible and lingual borders dose not change in the atrophic process of mandible. The mandibular canal within the mandible courses downwards from mandibular foramen towards mesial and subsequently it gets to the mental foramen. The distance between the mandibular canal and buccal external border of basal bone changes similar to the change of cranial borders of alveolar bone in the atrophic process of mandible. Conclusion: CT scanning was very effective and practicable to analyze the location and course of the mandibular canal and to observe the alveolar and basal bone changes of atrophic mandible. Also more detailed investigation of basal bone changes observed during the remodeling procedures of atrophic mandibles seems reasonable to rely on the massive anthropologic collections of atrophic mandibles combined with CT scanning.

  • PDF

Effect of Total Collimation Width on Relative Electron Density, Effective Atomic Number, and Stopping Power Ratio Acquired by Dual-Layer Dual-Energy Computed Tomography

  • Jung, Seongmoon;Kim, Bitbyeol;Yoon, Euntaek;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.165-171
    • /
    • 2021
  • Purpose: This study aimed to evaluate the effect of collimator width on effective atomic number (EAN), relative electron density (RED), and stopping power ratio (SPR) measured by dual-layer dual-energy computed tomography (DL-DECT). Methods: CIRS electron density calibration phantoms with two different arrangements of material plugs were scanned by DL-DECT with two different collimator widths. The first phantom included two dense bone plugs, while the second excluded dense bone plugs. The collimator widths selected were 64 mm×0.625 mm for wider collimators and 16 mm×0.625 mm for narrow collimators. The scanning parameters were 120 kVp, 0.33 second gantry rotation, 3 mm slice thickness, B reconstruction filter, and spectral level 4. An image analysis portal system provided by a computed tomography (CT) manufacturer was used to derive the EAN and RED of the phantoms from the combination of low energy and high energy CT images. The EAN and RED were compared between the images scanned using the two different collimation widths. Results: The CT images with the wider collimation width generated more severe artifacts, particularly with high-density material (i.e., dense bone). RED and EAN for tissues (excluding lung and bones) with the wider collimation width showed significant relative differences compared to the theoretical value (4.5% for RED and 20.6% for EAN), while those with the narrow collimation width were closer to the theoretical value of each material (2.2% for EAN and 2.3% for RED). Scanning with narrow collimation width increased the accuracy of SPR estimation even with high-density bone plugs in the phantom. Conclusions: The effect of CT collimation width on EAN, RED, and SPR measured by DL-DECT was evaluated. In order to improve the accuracy of the measured EAN, RED, and SPR by DL-DECT, CT scanning should be performed using narrow collimation widths.

Analysis of Master Dimensional Shape Error Rate According to Reverse Engineering Technique (역설계 방법에 의한 시편 치수 형상의 오차율 분석)

  • Jung, Hyun-Suk;Park, Su-Jung;Yoo, Joong-Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.393-399
    • /
    • 2016
  • In this study, an experiment was conducted using a 3D scanner, commonly used in reverse engineering techniques, and the newly introduced CT measuring machine. The hole, width, and angle of specimens having various shapes were designated, the error rates in dimensional modelling generated during scanning with each device were compared, and the models were printed using a 3D printer. A secondary comparative analysis of the two printed specimens was conducted; the causes of dimension errors that occur during the printing process after scanning with each device and the differences associated with variation in shape were also analyzed. Based on the analysis results, the featured shape for each scanning application method and issues to consider in reverse engineering were presented, and the use of the CT measuring machine was recommended as a method to minimize error rates in dimensions and ensure efficient reverse engineering.

Characteristics of waterflood at low rate in low permeability sandstones based on the CT scanning

  • Mo, S.Y.;Lei, Q.;Lei, G.;Gai, S.H.;Liu, Z.K.
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.344-351
    • /
    • 2018
  • It is reported that the flooding rate in low permeability sandstones is low and the oil recovery is hard to increase after water breakthrough. Understanding characteristics of waterflood is hence important for the recovery improvement. In this work, flooding tests on low permeability sandstones were conducted. The corresponding flooding characteristics were investigated by means of CT scanning and Nuclear Magnetic Resonance. Effects of irreducible water and different rates were also discussed in detail. Experimental results reveal a piston-like displacement at a low rate in low permeability samples. The saturation profile is steep and almost vertical to the forward direction. The results at a low rate confirm that once water broke through, increasing the flooding rate or flooding time can hardly reduce the remaining oil inside the sample. It is probably due to the high pore-throat ratio proven by rate-controlled mercury. Results also confirm that the presence of initial water enhanced sweep efficiency substantially. On one hand, because water had previously occupied the small pores, the subsequent oil can only invade relatively large pores and became more movable. On the other hand, stable collars can not form due to the steep front, which may suppress the snap-off.

Effect of Variable Scanning Protocols on the Pre-implant Site Evaluation of the Mandible in Reformatted Computed Tomography (영상재구성 전산화 단층촬영에서 촬영조건의 변화가 하악골 술전 임플란트 부위 평가에 미치는 영향)

  • Kim Kee-Deog;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.21-32
    • /
    • 1999
  • Purpose: To evaluate the effect of variable scanning protocols of computed tomography for evaluation of pre-implant site of the mandible through the comparison of the reformatted cross-sectional images of helical CT scans obtained with various imaging parameters versus those of conventional CT scans. Materials and Methods: A dry mandible was imaged using conventional nonoverlapped CT scans with 1 mm slice thickness and helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5. 2.0, 2.5 and 3.0. All helical images were reconstructed at reconstruction interval of 1 mm. DentaScan reformatted images were obtained to allow standardized visualization of cross-sectional images of the mandible. The reformatted images were reviewed and measured separately by 4 dental radiologists. The image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal were evaluated and the distance between anatomic structures were measured by 4 dental radiologists. Results: On image qualities of continuity of cortical outline. trabecular bone structure and visibility of the mandibular canal and in horizontal measurement. there was no statistically significant difference among conventional and helical scans with pitches of 1.0. 1.5 and 2.0. In vertical measurement. there was no statistically significant difference among the conventional and all imaging parameters of helical CT scans with pitches of 1.0, 1.5, 2.0, 2.5 and 3.0. Conclusion: The images of helical CT scans with 1 mm slice thickness and pitches of 1.0, 1.5 and 2.0 are as good as those of conventional CT scans with 1 mm slice thickness for evaluation of predental implant site of the mandible. Considering the radiation dose and patient comfort, helical CT scans with 1 mm slice thickness and pitch of 2.0 is recommended for evaluation of pre-implant site of the mandible.

  • PDF

The Crucial Role of the Establishment of Computed Tomography Density Conversion Tables for Treating Brain or Head/Neck Tumors

  • Yang, Shu-Chin;Lo, Su-Hua;Shie, Li-Tsuen;Lee, Sung-Wei;Ho, Sheng-Yow
    • Progress in Medical Physics
    • /
    • v.32 no.3
    • /
    • pp.59-69
    • /
    • 2021
  • Purpose: The relationship between computed tomography (CT) number and electron density (ED) has been investigated in previous studies. However, the role of these measures for guiding cancer treatment remains unclear. Methods: The CT number was plotted against ED for different imaging protocols. The CT number was imported into ED tables for the Pinnacle treatment planning system (TPS) and was used to determine the effect on dose calculations. Conversion tables for radiation dose calculations were generated and subsequently monitored using a dosimeter to determine the effect of different CT scanning protocols and treatment sites. These tables were used to retrospectively recalculate the radiation therapy plans for 41 patients after an incorrect scanning protocol was inadvertently used. The gamma index was further used to assess the dose distribution, percentage dose difference (DD), and distance-to-agreement (DTA). Results: For densities <1.1 g/cm3, the standard deviation of the CT number was ±0.6% and the greatest variation was noted for brain protocol conditions. For densities >1.1 g/cm3, the standard deviation of the CT number was ±21.2% and the greatest variation occurred for the tube voltage and head and neck (H&N) protocol conditions. These findings suggest that the factors most affecting the CT number are the tube voltage and treatment site (brain and H&N). Gamma index analyses for the 41 retrospective clinical cases, as well as brain metastases and H&N tumors, showed gamma passing rates >90% and <90% for the passing criterion of 2%/2 and 1%/1 mm, respectively. Conclusions: The CT protocol should be carefully decided for TPS. The correct protocol should be used for the corresponding TPS based on the treatment site because this especially affects the dose distribution for brain metastases and H&N tumor recognition. Such steps could help reduce systematic errors.