• Title/Summary/Keyword: CT phantom

Search Result 549, Processing Time 0.028 seconds

MTF Evaluation and Clinical Application according to the Characteristic Kernels in the Computed Tomogrsphy (Kernel 특성에 따른 MTF 평가 및 임상적 적용에 관한 연구)

  • Yoo, Beong-Gyu;Lee, Jong-Seok;Kweon, Dae-Cheol
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.55-64
    • /
    • 2007
  • Our objective was to evaluate the clinical feasibility of spatial domain filtering as an alternative to additional image reconstruction using different kernels in CT. Kernels were grouped as H30 (head medium smooth), B30 (body medium smooth), S80 (special) and U95 (ultra sharp). Derived from thin coilimated source images, four sets of images were generated using phantom kernels. MTF (50%, 10%, 2%) measured with H30 (3.25, 5.68, 7.45 Ip/cm) B30 (3.84, 6.25, 7.72 Ip/cm), S80 (4.69, 9.49, 12.34 Ip/cm), and U95 (14.19, 20.31, 24.67 Ip/cm). Spatial resolution for the U95 kernel (0.6 mm) was 33.3% greater than that of the H30 and B30 (0.8 mm) kernels. Initially scanned kernels images were rated for subjective image qualify, using a five-point scale. Image scanned with a convolution kernel led to an increase in noise (U95), whereas the results for CT attenuation coefficient were comparable. CT images increase the diagnostic accuracy in head (H30), abdomen (B30), temporal bone and lung (U95) kernels may be controlled by adjusting CT various algorithms, which should be adjusted to take into account the kernels of the CT undergoing the examination.

  • PDF

Selection of mAs with Using Table Strap in Computed Tomography Scan (전산화단층촬영 시 환자 고정 밴드를 이용한 선량의 선택)

  • Lee, Young-Hyen;An, Hyeong-Theck
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.63-69
    • /
    • 2011
  • Table strapis patient fixture for securing the patient movements and falls. if it designed to measure the abdominal circumference and used as an indicator of dose selection at CT scan. it will prevent the overexposure of dose without degradation of image quality and efficiently manage dose of each type of body to technician to deal with CT. First, in order to compare the dose used in CT image and qualitative characteristics. reference image is obtained by examining the abdominal phantom in same conditions with the hospital 120 kVp, 200 mAs, D-Dom (Dynamic Dose Of Modulation). SNR, PSNR, RMSE, MAE, CTDIvol of CT images are compared with reference image. for comparing with reference image, the image that Umbilicus level image of Abdomen CT is stored in the PACS were used. For comparison, the top 12 o'clock portion of the air drawn from the same ROI was measured. CTDIvol, mAs, etc. In order to analyze the characteristics of the image, by measuring the length of the umbilicus circumference, pattern of the dose was analyzed. by using the analyzed perimeter and dose information, To be identified visually, fixed band that scale marked were produced. Use them, If the length of circumference of less than 60 cm 100 mAs, Case of 61~80 cm 120 mAs, Case of 80~100 cm 150 mAs, more than 100 cm 200 mAs, dose selection based on the perimeter, the image was applied. by compare analyzed with the Reference Image, image quality was assessed. by compare with existing tests that equally 200 mAs applied, How much was confirmed that the dose reduction. 1. Depending on the Abdominal circumference, the average PSNR(dB) of the image that differently dose applied was 45.794. 2. Comparing with existing test. the dose of scan that adjusted the mAs depending on the circumference was decreased about 40%. SNR and PSNR of the image that obtained by adjusting the standard mAs based on dose modulation were not much different. Therefore, By choosing a low mAs. dose reduction can be obtained. and the dose selection method that measured Abdominal circumference using a fixed band can protect the overexposure and uniformly apply dose of each type of body to technician to deal with CT.

  • PDF

Differences in Target Volume Delineation Using Typical Radiosurgery Planning System (각각의 방사선수술 치료계획시스템에 따른 동일 병변의 체적 차이 비교)

  • Han, Su Chul;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.265-270
    • /
    • 2013
  • Correct target volume delineation is an important part of radiosurgery treatment planning process. We designed head phantom and performed target delineation to evaluate the volume differences due to radiosurgery treatment planning systems and image acquisition system, CT/MR. Delineated mean target volume from CT scan images was $2.23{\pm}0.08cm^3$ on BrainSCAN (NOVALS), $2.13{\pm}0.07cm^3$ on Leksell gamma plan (Gamma Knife) and $2.24{\pm}0.10cm^3$ on Multi plan (Cyber Knife). For MR images, $2.08{\pm}0.06cm^3$ on BrainSCAN, $1.94{\pm}0.05cm^3$ on Leksell gamma plan and $2.15{\pm}0.06cm^3$ on Multi plan. As a result, Differences of delineated mean target volume due to radiotherapy planning system was 3% to 6%. And overall mean target volume from CT scan images was 6.36% larger than those of MR scan images.

Comparisons of Image Quality and Entrance Surface Doses according to Care Dose 4D + Care kV in Chest CT (Chest CT에서 Care Dose 4D+Care kV에 따른 화질과 입사표면선량 비교)

  • Kang, Eun-Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.45-51
    • /
    • 2022
  • This study compared DLP values along with phantom entrance surface doses and the image quality of chest CT scans made using a Care Dose 4D+Care kV System, scans that are made using only the Care Dose 4D function, and scans that are made with changes made by applying 80 kVp, 100 kVp, 120 kVp, and 140 kVp to the Care Dose 4D and tube voltage to search for methods to maintain the highest image quality with minimal patient doses. It was shown that DLP values decreased 6.727% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 6.481% when scans were taken with Chest Care Dose 4D + Care kV. With Chest Non as a standard, skin surface doses decreased 16.519% when scans were taken with Chest Care Dose 4D + Care kV semi 100 and 15.705% when scans were taken with Chest Care Dose 4D + Care kV. With comparisons of image quality, when comparisons were made with Chest Non, comparisons made of SNR values and CNR values in all scanning conditions including Care Dose 4D + Care kV showed that there were no significant differences at P>0.05. Imaging using Chest Care Dose 4D + Care kV in chest CT showed that exposure doses decreased similarly to result values gained from the best conditions through manual adjustments of kV and mAS, and there were no significant differences in image SNR and CNR. If the Chest Care Dose 4D + Care kV function is used, image quality is maintained and patient exposure to radiation can be reduced.

Image Quality Analysis when applying DLIR Reconstruction Techniques in NECT CT (NECT CT에서 DLIR 재구성기법 적용 시 화질분석)

  • Yoon, Joon;Kim, Hyeon-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.387-394
    • /
    • 2022
  • 120 kVp FBP reconstruction image standard by using raw data after scanning by changing tube voltage among the NECK CT protocols that are broad applied in clinical practice using a human phantom including thyroid gland The usefulness of the DLIR reconstruction technique was investigated. As a result, CTDIvol decreased when the DLIR reconstruction technique was applied, and in particular, the image quality obtained under the same standard scanning conditions at a lower dose for ASIR-V and DLIR reconstruction was reached than when FBP was applied at the same kVp In addition, as a result of SNR and CNR analysis, the DLIR reconstructed image was analyzed with high SNR and CNR values, and SSIM analysis, the SSIM index of the 100 kVp, DLIR reconstructed image was measured to be close to 1, and it was analyzed that the similarity of the reconstructed image to the original image was high (p>0.05). If the results of this study are used to supplement clinical image evaluation and further develop an algorithm applicable to various anatomical structures, it is thought that it will be useful for clinical application as it is possible to maintain the image quality while lowering the examination dose.

Study of 68Ga Labelled PET/CT Scan Parameters Optimization (68Ga 표지 PET/CT 검사의 최적화된 매개변수에 대한 연구)

  • In Suk Kwak;Hyuk Lee;Si Hwal Kim;Seung Cheol Moon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.2
    • /
    • pp.111-127
    • /
    • 2023
  • Purpose: Gallium-68 (68Ga) is increasingly used in nuclear medicine imaging for various conditions such as lymphoma and neuroendocrine tumors by labeling tracers like Prostate Specific Membrane Antigen (PSMA) and DOTA-TOC. However, compared to Fluorine-18 (18F) used in conventional nuclear medicine imaging, 68Ga has lower spatial resolution and relatively higher Signal to Background Ratio (SBR). Therefore, this study aimed to investigate the optimized parameters and reconstruction methods for PET/CT imaging using the 68Ga radiotracer through model-based image evaluation. Materials and Methods: Based on clinical images of 68Ga-PSMA PET/CT, a NEMA/IEC 2008 PET phantom model was prepared with a Hot vs Background (H/B) ratio of 10:1. Images were acquired for 9 minutes in list mode using DMIDR (GE, Milwaukee WI, USA). Subsequently, reconstructions were performed for 1 to 8 minutes using OS-EM (Ordered Subset Expectation Maximization) + TOF (Time of Flight) + Sharp IR (VPFX-S), and BSREM (Block Sequential Regularized Expectation Maximization) + TOF + Sharp IR (QCFX-S-400), followed by comparative evaluation. Based on the previous experimental results, images were reconstructed for BSREM + TOF + Sharp IR / 2 minutes (QCFX-S-2min) with varying β-strength values from 100 to 700. The image quality was evaluated using AMIDE (freeware, Ver.1.0.1) and Advanced Workstation (GE, USA). Results: Images reconstructed with QCFX-S-400 showed relatively higher values for SNR (Signal to Noise Ratio), CNR (Contrast to Noise Ratio), count, RC (Recovery Coefficient), and SUV (Standardized Uptake Value) compared to VPFX-S. SNR, CNR, and SUV exhibited the highest values at 2 minutes/bed acquisition time. RC showed the highest values for a 10 mm sphere at 2 minutes/bed acquisition time. For small spheres of 10 mm and 13 mm, an inverse relationship between β-strength increase and count was observed. SNR and CNR peaked at β-strength 400 and then decreased, while SUV and RC exhibited a normal distribution based on sphere size for β-strength values of 400 and above. Conclusion: Based on the experiments, PET/CT imaging using the 68Ga radiotracer yielded the most favorable quantitative and qualitative results with a 2 minutes/bed acquisition time and BSREM reconstruction, particularly when applying β-strength 400. The application of BSREM can enhance accurate quantification and image quality in 68Ga PET/CT imaging, and an optimization process tailored to each institution's imaging objectives appears necessary.

Impact of the Respiratory Motion and Longitudinal Profile on Helical Tomotherapy

  • Park, So Hyun;Choi, Jinhyun;Kim, JinSung;Ahn, Sohyun;Kim, Min Joo;Lee, Ho;Choi, Seo Hee;Park, Kwangwoo
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The $TomoTherapy^{(R)}$ beam-delivery method creates helical beam-junctioning patterns in the dose distribution within the target. In addition, the dose discrepancy results in the particular region where the resonance by pattern of dose delivery occurs owing to the change in the position and shape of internal organs with a patient's respiration during long treatment times. In this study, we evaluated the dose pattern of the longitudinal profile with the change in respiration. The superior-inferior motion signal of the programmable respiratory motion phantom was obtained using AbChes as a four-dimensional computed tomography (4DCT) original moving signal. We delineated virtual targets in the phantom and planned to deliver the prescription dose of 300 cGy using field widths of 1.0 cm, 2.5 cm, and 5.0 cm. An original moving signal was fitted to reflecting the beam delivery time of the $TomoTherapy^{(R)}$. The EBT3 film was inserted into the phantom movement cassette, and static, without the movement and with the original movement, was measured with signal changes of 2.0 s, 4.0 s, and 5.0 s periods, and 2.0 mm and 4.0 mm amplitudes. It was found that a dose fluctuation within ${\pm}4.0%$ occurred in all longitudinal profiles. Compared with the original movement, the region of the gamma index above 1 partially appeared within the target and the border of the target when the period and amplitude were changed. Gamma passing rates were 95.00% or more. However, cases for a 5.0 s period and 4.0 mm amplitude at a field width of 2.5 cm and for 2.0 s and 5.0 s periods at a field width of 5.0 cm have gamma passing rates of 92.73%, 90.31%, 90.31%, and 93.60%. $TomoTherapy^{(R)}$ shows a small difference in dose distribution according to the changes of period and amplitude of respiration. Therefore, to treat a variable respiratory motion region, a margin reflecting the degree of change of respiration signal is required.

Reconstruction of body contour with digital camera image (Digital Camera의 영상을 이용한 신체 단면도 제작)

  • Kwon, KT;Kim, CM;Kang, TY;Park, CS;Song, HK
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2003
  • I. Purpose It is essential to have the correct body contour information for the calculation of dose distribution. The role of CT images in the radiation oncology field has been increased. But there still exists a method to use cast or lead wire for the body contour drawing. This traditional method has drawbacks such as in accurate and time consuming procedure. This study has been designed to overcome this problem. II. Materials and Methods A digital camera is attached to a pole which stands on the opposite side of the gantry. Positional information was acquired from an image of the phantom which is specially designed for this study and located on the isocenter level of the simulator Laser line on the patients skin or on the phantom surface was digitized and reconstructed as the contour. Verification of usefulness this technique has been done with various shape of phantoms and a patients chest III. Results and Conclusions Contours from the traditional method with the cast or lead wire and the digital image method showed good agreement within experimetal error range. This technique showed more efficiente in time and convenience. For irregular shaped contour, like H&N region, special care are needed. The results suggest that more study is needed. To use of the another photogrammatory techinique with two camera system may be better for the actual clinical application

  • PDF

Optimal Density Assignment to 2D Diode Array Detector for Different Dose Calculation Algorithms in Patient Specific VMAT QA

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Background: The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Materials and Methods: Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. Results and Discussion: For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were $97.2%{\pm}2.3%$, and $99.4%{\pm}1.1%$, respectively while those for 15 MV were $98.5%{\pm}0.85%$ and $99.8%{\pm}0.2%$, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. Conclusion: The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.

A Study on the Radiation Dose in Computed Tomographic Examinations (전산화단층촬영 검사의 방사선 선량에 관한 연구)

  • Lim, Chung-Hwang;Cho, Jung-Keun;Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.381-389
    • /
    • 2007
  • The purpose of this study is investigation of radiation dose in CT scan. Data were collected from various references and organizations. Doses measured by CT scanners of each medical organization were analyzed and they were calculated through the examination protocol. The results are as follows : 1. $CTDI_W$ value per 100mAs measured by Head Phantom was the highest in <4-slice MDCT scanner> of 24.20 mGy. $CTDI_W$ values were significantly different among scanner generations(p < 0.01). 2. $CTDI_W$ value per 100 mAs measured using body phantom was the highest in <4-slice MDCT scanner> of 13.58 mGy and the $CTDI_W$ values were significantly different among scanner generations(p < 0.01). 3. When contrast medium was not used, the highest scanner was <16 slice MDCT> of $818.83\;mGy{\codt}cm$ in exposure dose in brain scan(p < 0.05). When the contrast medium was used, the highest scanner was <4 slice MDCT> and its average was $1,460.77\;mGy{\cdot}cm$(p < 0.1). 4. When the contrast medium was not used, the highest scanner was <16-slice MDCT> of $521.63\;mGy{\cdot}cm$ on average in terms of the exposure dose in chest inspection(p<0.05). when the contrast medium was used, the highest scanner was found in 8 slice MDCT scanner and its average was $1,174.70\;mGy{\cdot}cm$. There was no statistically significant difference among scanners. 5. When the contrast medium was not used, the highest scanner was <16-slice MDCT> and its average was $856.27\;mGy{\cdot}cm$ in exposure dose on the abdomen-pelvis(p<0.05). when the contrast medium was used, the highest scanner was <16-slice MDCT> and its average was $1,720.64\;mGy{\cdot}cm$ on average (p < 0.05). 6. When the contrast medium was not used, the highest scanner was <8-slice MDCT> and its average was $612.07\;mGy{\cdot}cm$ in exposure dose in liver inspection(p < 0.05). when the contrast medium was used, the highest scanner was <8-slice MDCT scanner> and its average was $2,197.93\;mGy{\cdot}cm$ in exposure dose(p < 0.1). seventy six point two percent of medical facilities were in risk of radiation exposure while the number of phase was three to four times in their dose inspection of contrast medium.

  • PDF