• Title/Summary/Keyword: CT phantom

Search Result 547, Processing Time 0.031 seconds

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

A Study of Image Quality and Exposed Dose by Field Size Changing on CBCT (CBCT 촬영 시 조사야 조절에 따른 영상의 최적화 및 피폭선량에 관한 고찰)

  • Bang, Seung Jae;Kim, Young Yeon;Jeong, Il Seon;Kim, Jeong Soo;Kim, Young Gon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.175-180
    • /
    • 2013
  • Purpose: Modern radiation therapy technique such as IGRT has become a routine clinical practice on LINAC for decrease patient's set-up error. CBCT can be used to adjust patient set-up error and treat patient more accurately. The Purpose of this study is to evaluate field size of CBCT for improving Image quality and suggest reference date of CBCT field size. Materials and Methods: Image date were acquired using KV CBCT and Catphan phantom (Half fan and full fan mode were scanned from 2 ~16 cm, at intervals of 2 cm). Field size were categorized by Small field size (2 cm, 4 cm), Medium field size (8 cm, 10 cm), Large field size (more than 14 cm) and evaluate. To estimated the CTDi using CTDi phantom and Ion chamber. Results: CT number linearity of Small and Large field size are greater than Medium field size. Spatial resolution are not significantly different without Small field size. But half fan mode is more different than full fan mode. In full fan, except Medium field size, all field size exceed recommendation for HU uniformity. But half pan has stability for all field except Small field size. CTDi makes radical sign function graph in Medium field size. Conclusion: The worst result was given by Small field size for Image quality and practically. Medium field size can be useful to prevent patient from radiation exposure and give better Image quality. So this study recommends that Medium field size (8~10 cm) is more suitable for CBCT.

  • PDF

Optimal Localization through DSA Distortion Correction for SRS

  • Shin, Dong-Hoon;Suh, Tae-Suk;Huh, Soon-Nyung;Son, Byung-Chul;Lee, Hyung-Koo;Choe, Bo-Young;Shinn, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In Stereotactic Radiosurgery (SRS), there are three imaging methods of target localization, such as digital subtraction Angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI). Especially, DSA and MR images have a distortion effect generated by each modality. In this research, image properties of DSA were studied. A first essential condition in SRS is an accurate information of target locations, since high dose used to treat a patient may give a complication on critical organ and normal tissue. Hut previous localization program did not consider distortion effect which was caused by image intensifier (II) of DSA. A neurosurgeon could not have an accurate information of target locations to operate a patient. In this research, through distortion correction, we tried to calculate accurate target locations. We made a grid phantom to correct distortion, and a target phantom to evaluate localization algorithm. The grid phantom was set on the front of II, and DSA images were obtained. Distortion correction methods consist of two parts: 1. Bilinear transform for geometrical correction and bilinear interpolation for gray level correction. 2. Automatic detection method for calculating locations of grid crosses, fiducial markers, and target balls. Distortion was corrected by applying bilinear transform and bilinear interpolation to anterior-posterior and left-right image, and locations of target and fiducial markers were calculated by the program developed in this study. Localization errors were estimated by comparing target locations calculated in DSA images with absolute locations of target phantom. In the result, the error in average with and without distortion correction is $\pm$0.34 mm and $\pm$0.41 mm respectively. In conclusion, it could be verified that our localization algorithm has an improved accuracy and acceptability to patient treatment.

  • PDF

Correction of Prompt Gamma Distribution for Improving Accuracy of Beam Range Determination in Inhomogeneous Phantom

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Young-su;Kim, Chan Hyeong;Shin, Dong Ho;Lee, Se Byeong;Jeong, Jong Hwi
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.207-217
    • /
    • 2017
  • For effective patient treatment in proton therapy, it is therefore important to accurately measure the beam range. For measuring beam range, various researchers determine the beam range by measuring the prompt gammas generated during nuclear reactions of protons with materials. However, the accuracy of the beam range determination can be lowered in heterogeneous phantoms, because of the differences with respect to the prompt gamma production depending on the properties of the material. In this research, to improve the beam range determination in a heterogeneous phantom, we derived a formula to correct the prompt-gamma distribution using the ratio of the prompt gamma production, stopping power, and density obtained for each material. Then, the prompt-gamma distributions were acquired by a multi-slit prompt-gamma camera on various kinds of heterogeneous phantoms using a Geant4 Monte Carlo simulation, and the deduced formula was applied to the prompt-gamma distributions. For the case involving the phantom having bone-equivalent material in the soft tissue-equivalent material, it was confirmed that compared to the actual range, the determined ranges were relatively accurate both before and after correction. In the case of a phantom having the lung-equivalent material in the soft tissue-equivalent material, although the maximum error before correction was 18.7 mm, the difference was very large. However, when the correction method was applied, the accuracy was significantly improved by a maximum error of 4.1 mm. Moreover, for a phantom that was constructed based on CT data, after applying the calibration method, the beam range could be generally determined within an error of 2.5 mm. Simulation results confirmed the potential to determine the beam range with high accuracy in heterogeneous phantoms by applying the proposed correction method. In future, these methods will be verified by performing experiments using a therapeutic proton beam.

Assessment of Imaging Distortion in Magnetic Resonance Imaging for Stereotactic Radiosurgery: Through Phantom Study (뇌정위 방사선수술 시스템을 위한 자기공명영상의 공간적 왜곡의 측정 : 모형실험을 통한 연구)

  • 박선원;한문희;김동규;정현태;송인찬
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • Purpose : To assess the distortion of MRI with the Leksell stereotactic radiosurgery system in variable pulse sequence and imaging plane through phantom study, to find most adequate imaging plane and pulse sequence for stereotactic radiosurgery system. Materials and methods : We made the phantoms for MRI and get images in variable conditions and analyzed the image distortion using image analysis program, and statistically using paired student t-test. Results : The transeverse plane images had acceptable error ranges bless than 1.5mm) in all pulse sequence in both the analysis of fiducial marker in stereotactic G-frame and the phantom study. The coronal plane images had unacceptable large errors (more than 1.7mm) in the analysis of fiducial marker in the stereotactic G-frame, but had corrected small errors (less than 1.5mm) in the phantom study. Conclusion : We find from the phantom study that the present MR machines are adequate for stereotactic surgery system in frequently used pulse sequences, and imaging planes.

  • PDF

Verification of skin dose according to the location of tumor in Tomotherapy (토모테라피 시 종양의 위치에 따른 피부선량 검증)

  • Yoon, Bo Reum;Park, Su Yeon;Park, Byoung Suk;Kim, Jong Sik;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.273-280
    • /
    • 2014
  • Purpose : To verify the skin dose in Tomotherapy-based radiation treatment according to the change in tumor locations, skin dose was measured by using Gafchromic EBT3 film and compared with the planned doses to find out the gap between them. Materials and Methods : In this study, to measure the skin dose, I'm RT Phantom(IBA Dosimetry, Germany) was utilized. After obtaining the 2.5mm CT images, tumor locations and skin dose measuring points were set by using Pinnacle(ver 9.2, Philips Medical System, USA). The tumor location was decided to be 5mm and 10mm away from surface of the phantom and center. Considering the attenuation of a Tomo-couch, we ensured a symmetric placement between the ceiling and floor directions of the phantom. The measuring point of skin doses was set to have 3mm and 5mm thickness from the surface. Measurement was done 3 times. By employing TomoHD(TomoHD treatment system, Tomotherapy Inc., Madison, Wisconsin, USA), we devised Tomotherapy plans, measured 3 times by inserting Gafchromic EBT3 film into the phantom and compared the measurement with the skin dose treatment plans. Results : The skin doses in the upper part of the phantom, when the tumor was located in the center, were found to be 7.53 cGy and 7.25 cGy in 5mm and 3mm respectively. If placed 5mm away from the skin in the ceiling direction, doses were 18.06 cGy and 16.89 cGy; if 10mm away, 20.37 cGy and 18.27 cGy, respectively. The skin doses in the lower part of the phantom, when the tumor was located in the center, recorded 8.82 cGy and 8.29 cGy in 5mm and 3mm, each; if located 5mm away from the lower part skin, 21.69 cGy and 19.78 cGy were respectively recorded; and if 10mm away, 20.48 cGy and 19.57 cGy were recorded. If the tumor was placed in the center, skin doses were found to increase by 3.2~17.1% whereas if the tumor is 5mm away from the ceiling part, the figure decreased to 2.8~9.0%. To the Tomo-couch direction, skin doses showed an average increase of 11% or over, compared to the planned treatment. Conclusion : This study found gaps between planned skin doses and actual doses in the Tomotherapy treatment planning. Especially to the Tomo-cocuh direction, skin doses were found to be larger than the planned doses. Thus, during the treatment of tumors near the Tomo-couch, doses will need to be more accurately calculated and more efforts to verify skin doses will be required as well.

Evaluation of Retro recon for SRS planning correction according to the error of recognize to coordinate (SRS의 좌표 인식 오류 시 Retro recon을 이용한 수정 방법에 관한 평가)

  • Moon, hyeon seok;Jeong, deok yang;Do, gyeong min;Lee, yeong cheol;Kim, sun myung;Kim, young bum
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2016
  • Purpose : The purpose of this study was to evaluate the Retro recon in SRS planning using BranLAB when stereotactic location error occurs by metal artifact. Materials and Methods : By CT simulator, image were acquired from head phantom(CIRS, PTW, USA). To observe stereotactic location recognizing and beam hardening, CT image were approved by SRS planning system(BrainLAB, Feldkirchen, Germany). In addition, we compared acquisition image(1.25mm slice thickness) and Retro recon image(using for 2.5 mm, 5mm slice thickness). To evaluate these three images quality, the test were performed by AAPM phantom study. In patient, it was verified stereotactic location error. Results : All the location recognizing error did not occur in scanned image of phantom. AAPM phantom scan images all showed the same trend. Contrast resolution and Spatial resolution are under 6.4 mm, 1.0 mm. In case of noise and uniformity, under 11, 5 of HU were measured. In patient, the stereotactic location error was not occurred at reconstructive image. Conclusion : For BrainLAB planning, using Retro recon were corrected stereotactic error at beam hardening. Retro recon may be the preferred modality for radiation treatment planning and approving image quality.

  • PDF

Effective Dose Evaluation using Clinical PET/CT Acquisition Protocols (전신 PET/CT 영상 획득 프로토콜을 이용한 유효선량 평가)

  • Nam, So-Ra;Son, Hye-Kyung;Lee, Sang-Hoon;Lee, Chang-Lae;Cho, Hyo-Min;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • The purpose of this study was to evaluate the radiation dose for clinical PET/CT protocols in clinical environments using Alderson phantom and TLDs. Radiation doses were evaluated for both Philips GEMINI 16 slice PET/CT system and GE DSTe 16 slice PET/CT system. Specific organ doses with $^{137}Cs$ transmission scan, high quality CT scan and topogram in philips GEMINI PET/CT system were measured. Specific organ doses with CT scan for attenuation map, CT scan for diagnosis and topogram in GE DSTe PET/CT system were also measured. The organs were selected based on ICRP60 recommendation. The TLDs used for measurements were selected for within an accuracy of ${\pm}5%$ and calibrated in 10 MV X-ray radiation field. The effective doses for $^{137}Cs$ transmission scan, high qualify scan, and topogram in Philips GEMINI PET/CT system were $0.14{\pm}0.950,\;29.49{\pm}1.508\;and\;0.72{\pm}0.032mSv$ respectively. The effective doses for CT scan to make attenuation map, CT scan to diagnose and topogram in GE DSTe PET/CT system were $20.06{\pm}1.003,\;24.83{\pm}0.805\;and\;0.27{\pm}0.008mSv$ respectively. We evaluated the total effective dose by adding effective dose for PET Image. The total PET/CT doses for Philips GEMINI PET/CT (Topogram+$^{137}Cs$ transmission scan+PET, Topogram+high qualify CT+PET) and GE DSTe PET/CT (Topogram +CT for attenuation map+ PET, Topogram+diagnostic CT+ PET) are $7.65{\pm}0.951,\;37.00{\pm}1.508,\;27.12{\pm}1.003\;and\;31.89{\pm}0.805mSv$ respectively. Further study may be needed to be peformed to find optimal PET/CT acquisition protocols for reducing the patient exposure with good image qualify.

  • PDF

Impact of Contrast agent for Attenuation Correction Using CT Scan in PET/CT System (PET/CT 시스템에서 CT 영상을 이용한 감쇠 보정 시 조영제가 PET 영상에 미치는 영향)

  • Son, Hye-Kyung;Turkington, Timothy G;Kwon, Yun-Young;Bong, Jung-Kyun;Jung, Hai-Jo;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.100-103
    • /
    • 2004
  • Experiments and simulation were done to study the impact of contrast agent when CT scan was used to attenuation correction for PET images in PET/CT system. Whole body phantom was imaged with various concentration of iodine-based contrast agent using CT. Mathematical emission and transmission density map with liver were made to simulate for whole body FDG imaging. Various transmission density maps was generated with non-uniform enhancement of contrast agent, hypo-attenuating of contrast agent for tumor, different concentration of contrast agent, and so on. Attenuation correction was done with all transmission maps. In the experiments, we confirmed that attenuation coefficient was changed by concentration of contrast agent. From the simulation data, image quality of attenuation corrected images was affected by contrast agent and artifact was produced by contrast agent. These results indicated that the contrast agent should be used with a full understanding of its potential problem in PET/CT system.

  • PDF

Impact of Contrast Agent for PET Images with CT-based Attenuation Correction (CT 영상을 이용한 감쇠 보정 시 조영제가 PET 영상에 미치는 영향)

  • Son Hye-Kyung;Turkington Timothy G.;Kwon Yun-Young;Jung Haijo;Kim Hee-Joung
    • Progress in Medical Physics
    • /
    • v.16 no.4
    • /
    • pp.192-201
    • /
    • 2005
  • Experiments and simulation were done to study the impact of contrast agent when CT scan was used to attenuation correction for PET Images in PET/CT system. Whole body phantom was imaged with various concentration of iodine-based contrast agent using CT. Mathematical emission and transmission density map with liver were made to simulate for whole body FDG Imaging. A variety of factors were estimated, including non-uniform enhancement of contrast agent, concentration and distribution size of contrast agent, noise level, image resolution, reconstruction algorithm, hypo-attenuation of contrast agent, and different time phases for contrast agent. Experimental studies showed that Hounsfield unit depends on the concentration of contrast agent and tube voltage. From the simulation data, contrast agents Introduced artifacts and degraded image quality on the attenuation-corrected PET images. The severity of these effects depends on a variety of factors, including the concentration and distribution size of contrast agent, the noise levels, and the Image resolution. These results Indicated that the impact of contrast agents should be considered with a full understanding of their potential problems in clinical PET/CT images.

  • PDF