• Title/Summary/Keyword: CT data

Search Result 1,288, Processing Time 0.041 seconds

Quantitative Comparisons in $^{18}F$-FDG PET Images: PET/MR VS PET/CT ($^{18}F$-FDG PET 영상의 정량적 비교: PET/MR VS PET/CT)

  • Lee, Moo Seok;Im, Young Hyun;Kim, Jae Hwan;Choe, Gyu O
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.68-80
    • /
    • 2012
  • Purpose : More recently, combined PET/MR scanners have been developed in which the MR data can be used for both anatometabolic image formation and attenuation correction of the PET data. For quantitative PET information, correction of tissue photon attenuation is mandatory. The attenuation map is obtained from the CT scan in the PET/CT. In the case of PET/MR, the attenuation map can be calculated from the MR image. The purpose of this study was to assess the quantitative differences between MR-based and CT-based attenuation corrected PET images. Materials and Methods : Using the uniform cylinder phantom of distilled water which has 199.8 MBq of $^{18}F$-FDG put into the phantom, we studied the effect of MR-based and CT-based attenuation corrected PET images, of the PET-CT using time of flight (TOF) and non-TOF iterative reconstruction. The images were acquired from 60 minutes at 15-minute intervals. Region of interests were drawn over 70% from the center of the image, and the Scanners' analysis software tools calculated both maximum and mean SUV. These data were analyzed by one way-anova test and Bland-Altman analysis. MR images are segmented into three classes(not including bone), and each class is assigned to each region based on the expected average attenuation of each region. For clinical diagnostic purpose, PET/MR and PET/CT images were acquired in 23 patients (Ingenuity TF PET/MR, Gemini TF64). PET/CT scans were performed approximately 33.8 minutes after the beginnig of the PET/MR scans. Region of interests were drawn over 9 regions of interest(lung, liver, spleen, bone), and the Scanners' analysis software tools calculated both maximum and mean SUV. The SUVs from 9 regions of interest in MR-based PET images and in CT-based PET images were compared. These data were analyzed by paired t test and Bland-Altman analysis. Results : In phantom study, MR-based attenuation corrected PET images generally showed slightly lower -0.36~-0.15 SUVs than CT-based attenuation corrected PET images (p<0.05). In clinical study, MR-based attenuation corrected PET images generally showed slightly lower SUVs than CT-based attenuation corrected PET images (excepting left middle lung and transverse Lumbar) (p<0.05). And percent differences were -8.01.79% lower for the PET/MR images than for the PET/CT images. (excepting lung) Based on the Bland-Altman method, the agreement between the two methods was considered good. Conclusion : PET/MR confirms generally lower SUVs than PET/CT. But, there were no difference in the clinical interpretations made by the quantitative comparisons with both type of attenuation map.

  • PDF

Effect of the Dose Reduction Applied Low Dose for PET/CT According to CT Attenuation Correction Method (PET/CT 저선량 적용 시 CT 감쇠보정법에 따른 피폭선량 저감효과)

  • Jung, Seung Woo;Kim, Hong Kyun;Kwon, Jae Beom;Park, Sung Wook;Kim, Myeong Jun;Sin, Yeong Man;Kim, Yeong Heon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.127-133
    • /
    • 2014
  • Purpose: Low dose of PET/CT is important because of Patient's X-ray exposure. The aim of this study was to evaluate the effectiveness of low-dose PET/ CT image through the CTAC and QAC of patient study and phantom study. Materials and Methods: We used the discovery 710 PET/CT (GE). We used the NEMA IEC body phantom for evaluating the PET data corrected by ultra-low dose CT attenuation correction method and NU2-94 phantom for uniformity. After injection of 70.78 MBq and 22.2 MBq of 18 F-FDG were done to each of phantom, PET/CT scans were obtained. PET data were reconstructed by using of CTAC of which dose was for the diagnosis CT and Q. AC of which was only for attenuation correction. Quantitative analysis was performed by use of horizontal profile and vertical profile. Reference data which were corrected by CTAC were compared to PET data which was corrected by the ultra-low dose. The relative error was assessed. Patients with over weighted and normal weight also underwent a PET/CT scans according to low dose protocol and standard dose protocol. Relative error and signal to noise ratio of SUV were analyzed. Results: In the results of phantom test, phantom PET data were corrected by CTAC and Q.AC and they were compared each other. The relative error of Q.AC profile was been calculated, and it was shown in graph. In patient studies, PET data for overweight patient and normal weight patient were reconstructed by CTAC and Q.AC under routine dose and ultra-low dose. When routine dose was used, the relative error was small. When high dose was used, the result of overweight patient was effectively corrected by Q.AC. Conclusion: In phantom study, CTAC method with 80 kVp and 10 mA was resulted in bead hardening artifact. PET data corrected by ultra- low dose CTAC was not quantified, but those by the same dose were quantified properly. In patients' cases, PET data of over weighted patient could be quantified by Q.AC method. Its relative difference was not significant. Q.AC method was proper attenuation correction method when ultra-low dose was used. As a result, it is expected that Q.AC is a good method in order to reduce patient's exposure dose.

  • PDF

A Study on the Use of Contrast Agent and the Improvement of Body Part Classification Performance through Deep Learning-Based CT Scan Reconstruction (딥러닝 기반 CT 스캔 재구성을 통한 조영제 사용 및 신체 부위 분류 성능 향상 연구)

  • Seongwon Na;Yousun Ko;Kyung Won Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.293-301
    • /
    • 2023
  • Unstandardized medical data collection and management are still being conducted manually, and studies are being conducted to classify CT data using deep learning to solve this problem. However, most studies are developing models based only on the axial plane, which is a basic CT slice. Because CT images depict only human structures unlike general images, reconstructing CT scans alone can provide richer physical features. This study seeks to find ways to achieve higher performance through various methods of converting CT scan to 2D as well as axial planes. The training used 1042 CT scans from five body parts and collected 179 test sets and 448 with external datasets for model evaluation. To develop a deep learning model, we used InceptionResNetV2 pre-trained with ImageNet as a backbone and re-trained the entire layer of the model. As a result of the experiment, the reconstruction data model achieved 99.33% in body part classification, 1.12% higher than the axial model, and the axial model was higher only in brain and neck in contrast classification. In conclusion, it was possible to achieve more accurate performance when learning with data that shows better anatomical features than when trained with axial slice alone.

Development of Physical Human Bronchial Tree Models from X-ray CT Images (X선 CT영상으로부터 인체의 기관지 모델의 개발)

  • Won, Chul-Ho;Ro, Chul-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.263-272
    • /
    • 2002
  • In this paper, we investigate the potential for retrieval of morphometric data from three dimensional images of conducting bronchus obtained by X-ray Computerized Tomography (CT) and to explore the potential for the use of rapid prototype machine to produce physical hollow bronchus casts for mathematical modeling and experimental verification of particle deposition models. We segment the bronchus of lung by mathematical morphology method from obtained images by CT. The surface data representing volumetric bronchus data in three dimensions are converted to STL(streolithography) file and three dimensional solid model is created by using input STL file and rapid prototype machine. Two physical hollow cast models are created from the CT images of bronchial tree phantom and living human bronchus. We evaluate the usefulness of the rapid prototype model of bronchial tree by comparing diameters of the cross sectional area bronchus segments of the original CT images and the rapid prototyping-derived models imaged by X-ray CT.

Measurement of CT Numbers for Effective Atomic Number And Physical Density of Compound (화합물의 물리적 밀도와 유효원자번호에 대한 CT수 측정)

  • Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2021
  • In the AAPM CT performance phantom, there is little data on the CT number of the effective atomic number and physical density corresponding to each peg and water of the CT number calibration insert. Therefore, the necessity of documentation was raised.The purpose of this study is to calculate the effective atomic number for each peg and water of the CT number calibration insert in the AAPM CT performance phantom, and to measure the CT number for the calculated effective atomic number and physical density for comparative analysis.In order to obtain CT number data on the effective atomic number and physical density of each peg and water from the CT number calibration insert of the AAPM CT performance phantom, the effective atomic number for each peg and water was first calculated. Then, CT slices were obtained by scanning the CT number calibration with a CT scanner. CT numbers were measured for each peg and water in the central CT slice. As a result, the CT numbers for the effective atomic number showed a nonlinear pattern of repeating the increase and decrease as the effective atomic number increased. In addition, the CT numbers for physical density showed a nonlinear pattern of repeating the increase and decrease as the physical density increased.

Error Analysis of Delivered Dose Reconstruction Using Cone-beam CT and MLC Log Data (콘빔 CT 및 MLC 로그데이터를 이용한 전달 선량 재구성 시 오차 분석)

  • Cheong, Kwang-Ho;Park, So-Ah;Kang, Sei-Kwon;Hwang, Tae-Jin;Lee, Me-Yeon;Kim, Kyoung-Joo;Bae, Hoon-Sik;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.332-339
    • /
    • 2010
  • We aimed to setup an adaptive radiation therapy platform using cone-beam CT (CBCT) and multileaf collimator (MLC) log data and also intended to analyze a trend of dose calculation errors during the procedure based on a phantom study. We took CT and CBCT images of Catphan-600 (The Phantom Laboratory, USA) phantom, and made a simple step-and-shoot intensity-modulated radiation therapy (IMRT) plan based on the CT. Original plan doses were recalculated based on the CT ($CT_{plan}$) and the CBCT ($CBCT_{plan}$). Delivered monitor unit weights and leaves-positions during beam delivery for each MLC segment were extracted from the MLC log data then we reconstructed delivered doses based on the CT ($CT_{recon}$) and CBCT ($CBCT_{recon}$) respectively using the extracted information. Dose calculation errors were evaluated by two-dimensional dose discrepancies ($CT_{plan}$ was the benchmark), gamma index and dose-volume histograms (DVHs). From the dose differences and DVHs, it was estimated that the delivered dose was slightly greater than the planned dose; however, it was insignificant. Gamma index result showed that dose calculation error on CBCT using planned or reconstructed data were relatively greater than CT based calculation. In addition, there were significant discrepancies on the edge of each beam while those were less than errors due to inconsistency of CT and CBCT. $CBCT_{recon}$ showed coupled effects of above two kinds of errors; however, total error was decreased even though overall uncertainty for the evaluation of delivered dose on the CBCT was increased. Therefore, it is necessary to evaluate dose calculation errors separately as a setup error, dose calculation error due to CBCT image quality and reconstructed dose error which is actually what we want to know.

Normal Human Pleural Surface Area Calculated by Computed Tomography Image Data

  • Kim, Doo-Sang;Roh, Hyung-Woon
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.27-30
    • /
    • 2006
  • Background; Pleural micro-metastasis of lung cancer is detected by touch print cytology or pleural lavage cytology, but its prognostic impact has not elucidated yet. We hypothesize that recurrence may depend on the amount of tumor cells disseminated in pleural cavity, if the invasiveness of all cancer is the same. To predict the amount of tumor cells disseminated in pleural cavity, we need pleural surface area, distributed pattern of cells and concentration of cells per unit area. Human pleural surface area has not reported yet. In this report, we calculate the normal human pleural surface area using CT image data processing. Methods; Twenty persons were checked CT scan, and we obtained the data from each image. In order to calculate the pleural surface, the outline of lung was firstly extruded from CT image data using home-made Digitizer program. And the distance between CT images was calculated from the extruded outline. Finally a normal human pleural surface was calculated from function between the distance of consecutive CT images and the calculated length. Results; Their mean age is $65{\pm}12$ years old (range $26{\sim}77$), body weight is $62{\pm}9\;kg\;(48{\sim}80)$, and height is $167{\pm}6\;cm\;(156{\sim}176)$. The number of images used is $36{\pm}7\;(24{\sim}51)$. Pleural surface area is $211,888{\pm}35,756\;mm^2\;(143,880{\sim}279,576)$. Right-side pleural surface area is $107,932\;mm^2$ and Lt is $103,955\;mm^2$. Costal, mediastinal and diaphragmatic surfaces of right-side pleura are $77,483\;mm^2,\;39,057\;mm^2,\;and\;8,608\;mm^2$ respectively, and left-side are $72,497\;mm^2,\;35,578\;mm^2,\;and\;4,120\;mm^2$ respectively. Conclusion; Normal human pleural surface area is calculated using CT image data at first and the result is about $0.212\;m^2$.

  • PDF

The Enhancement of a Power Control MAC Protocol for Ad Hoc Networks (에드혹 네트웍에서의 전력제어 MAC 프로토콜 향상)

  • 심은숙;김동균
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.220-222
    • /
    • 2004
  • 이동 애드 혹 망을 구성하는 노드들은 일반적으로 배터리 전력을 사용하기 때문에 이들의 에너지 소모량을 줄이는 연구들이 각 계층에 대해 이루어져 왔다. 몇몇 연구들은 매체 접근 제어 프로토콜로 많이 이용되는 IEEE 802.11 DCF의 전력 소비량을 줄이기 위한 전력 제어 기법을 제시하였다. 기본 전력 제어기법(BASIC Power Control Protocol)은 RTS-CTS와 DATA-ACK 에 대해서 각각 다른 전력을 적용하는 것이다. RTS-CTS는 최대 전력으로 전송되고, DATA-ACK는 불필요한 에너지 낭비를 줄이기 위해 최소한 의 필요한 전력으로 전송하였다. 그러므로 DATA-ACK의 전송범위(transmission range)와 전송파 감지영역(carrier sensing range)은 RTS-CTS의 영역보다 작아진다. 전송파 감지영역에서 RTS-CTS를 감지한 노드들은 신호를 올바로 해석할 수 없으므로 NAV 값을 EIFS로 설정한다. 이 EIFS 구간은 충돌을 막기에는 너무나 짧기 때문에. EIFS 구간이 지난 후에 채널이 비어있는 상태로 간주하고 전송을 시도하게 된다. 이에 따라 DATA-ACK 수신에 있어서 충돌율이 증가하게 되고 네트웍 전체 처리량이 감소하게 된다. 본 논문에서는 기본 전력제어 기법이 가지는 문제점을 해결하고 전체 네트웍 처리량을 향상 시킬수 있는 새로운 전력제어(Power Control) MAC 프로토콜을 제안하였다.

  • PDF

Development and Performance Evaluation of an Ultra-Compact CT with Auto Calibration of Detector Center Axis (검출기 중심축을 자동 보정하는 초소형 CT 개발 및 성능평가)

  • Byeong-Woo Kwak;Keun-Ho Rew
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.651-662
    • /
    • 2023
  • In this study, we designed and fabricated an ultra-compact CT that automatically calibrates the detector's center axis and verified its performance. The three-dimensional reconstruction performance was evaluated using 3D CAD data and X-ray data acquired by manually calibrating the center axis of the CT detector. The results showed that tilting the center axis by more than 0.25° causes circle break phenomenon, which rapidly degrades the quality of the 3D reconstructed image. By applying the automatic calibration device of a detector center axis, the 3D reconstruction performance was enhanced by calibrating the detector center axis to match the specimen rotation axis.

Influence on PET Exam Caused by Density Differences of Barium-sulfate Contrast Media (Barium 조영제의 농도 차이가 PET 검사에 미치는 영향)

  • Choi, Woo-Joon;Shin, Sang-Ki;Nam, Ki-Pyo;Park, Soon-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Purpose: The evaluation of SUV (Standardized Uptake Values) for quantitative analysis in PET exam is the most significant. In PET exam, we make attenuation correction images by using $^{68}Ge$, $^{137}Cs$ or CT data. At this time, a distorted attenuation map affects quantitative analysis. After the exam using barium-sulfate and high density of barium contrast make attenuation map distorted. And then it brings bed influences on SUV. The aim of this study is to verify the relationship between high density barium-sulfate and SUV in PET exam. Materials and Methods By using $^{18}F$-FDG, we made barium-sulfate powder, density of 0, 1.5, 3, 5, 10 and 15% respectively and acquired PET and PET/CT images per each density. And we examined SUV variations from PET and PET/CT images according to differences of barium's density. Moreover, we finally calculated SUV causing variations in HU (Hounsfield Units) values to justify whether the differences of barium density bring any changes in PET/CT exam. Results: From PET images acquired from transmission scan with $^{68}Ge$, we got SUV figures from 6.46 to 6.8 in barium density between 0 to 15 percent. On the other hand, In PET images acquired from Tx scan that using CT, SUV was 6.77 to 23.73, derived from the same barium density. And CT HU values range from 29 to 2004. Conclusion: PET images from Tx data using $^{68}Ge$ weren't affected by barium density and had no differences in SUV. But in the PET/CT images using CT Tx data, there's considerable variations in HU and SUV values according to a difference of barium density in HU values. To perform a precise examination, barium sulfate should be removed from a human body before performing a PET exam.

  • PDF