• Title/Summary/Keyword: CT data

Search Result 1,288, Processing Time 0.047 seconds

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

Usefulness of FDG-PET/CT as a Diagnostic Tool for Routine Post Therapy Evaluation in Endometrial Cancer (자궁내막암의 치료 후 루틴 추적검사 방법으로서 FDG-PET/CT의 유용성)

  • Lee, Shin-Jae;Jeon, Tae-Joo;Kim, Seung-Jo;Kim, Hee-Jin;An, Hee-Jung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.4
    • /
    • pp.301-308
    • /
    • 2009
  • Purpose: The aim of this study was to evaluate the usefulness of FDG-PET/CT as follow up imaging tool in patients with endometrial cancer after therapy. Material and Methods: One hundred one patients with endometrial cancer who underwent FDG PET/CT after the treatment of this disease were included in this study population (25-79 yr old, Mean age 50.6 yr old) and all these patients also performed various laboratory and imaging studies such as serum tumor marker, CT or MRI. The lesions having increased focal FDG uptake were classified into benign, equivocal, and malignant one according to their pattern and activity. Tumor recurrence was confirmed by histopathological results and other clinical and imaging data. Results: Among the 19 patients with 30 malignant or equivocal hot uptakes, 11 of 14 patients supposed to be malignant finding in PET/CT were proved to be tumor recurrence, while one of 5 patients with equivocal lesions were recurred malignancy, Two false negative cases were turned out to be peritoneal carcinomatosis, Estimated sensitivity, specificity and accuracy of PET/CT for diagnosis of recurrence in endometrial carcinoma after treatment were 86 %, 92 % and 91 %, respectively. Positive and negative predictive values in the same issue were 63% and 98%, respectively. Conclusion: FDG-PET/CT is useful for regular work up of endometrial carcinoma after the treatment because of its high negative predictive value as well as high sensitivity and specificity.

Relationship between 18F-FDG PET/CT Semi-Quantitative Parameters and International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society Classification in Lung Adenocarcinomas

  • Lihong Bu;NingTu;Ke Wang;Ying Zhou;Xinli Xie;Xingmin Han;Huiqin Lin;Hongyan Feng
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.112-123
    • /
    • 2022
  • Objective: To investigate the relationship between 18F-FDG PET/CT semi-quantitative parameters and the International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) histopathologic classification, including histological subtypes, proliferation activity, and somatic mutations. Materials and Methods: This retrospective study included 419 patients (150 males, 269 females; median age, 59.0 years; age range, 23.0-84.0 years) who had undergone surgical removal of stage IA-IIIA lung adenocarcinoma and had preoperative PET/CT data of lung tumors. The maximum standardized uptake values (SUVmax), background-subtracted volume (BSV), and background-subtracted lesion activity (BSL) derived from PET/CT were measured. The IASLC/ATS/ERS subtypes, Ki67 score, and epidermal growth factor/anaplastic lymphoma kinase (EGFR/ALK) mutation status were evaluated. The PET/CT semi-quantitative parameters were compared between the tumor subtypes using the Mann-Whitney U test or the Kruskal-Wallis test. The optimum cutoff values of the PET/CT semi-quantitative parameters for distinguishing the IASLC/ATS/ERS subtypes were calculated using receiver operating characteristic curve analysis. The correlation between the PET/CT semi-quantitative parameters and pathological parameters was analyzed using Spearman's correlation. Statistical significance was set at p < 0.05. Results: SUVmax, BSV, and BSL values were significantly higher in invasive adenocarcinoma (IA) than in minimally IA (MIA), and the values were higher in MIA than in adenocarcinoma in situ (AIS) (all p < 0.05). Remarkably, an SUVmax of 0.90 and a BSL of 3.62 were shown to be the optimal cutoff values for differentiating MIA from AIS, manifesting as pure ground-glass nodules with 100% sensitivity and specificity. Metabolic-volumetric parameters (BSV and BSL) were better potential independent factors than metabolic parameters (SUVmax) in differentiating growth patterns. SUVmax and BSL, rather than BSV, were strongly or moderately correlated with Ki67 in most subtypes, except for the micropapillary and solid predominant groups. PET/CT parameters were not correlated with EGFR/ALK mutation status. Conclusion: As noninvasive surrogates, preoperative PET/CT semi-quantitative parameters could imply IASLC/ATS/ERS subtypes and Ki67 index and thus may contribute to improved management of precise surgery and postoperative adjuvant therapy.

Generation and Detection of Cranial Landmark

  • Heo, Suwoong;Kang, Jiwoo;Kim, Yong Oock;Lee, Sanghoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Purpose When a surgeon examines the morphology of skull of patient, locations of craniometric landmarks of 3D computed tomography(CT) volume are one of the most important information for surgical purpose. The locations of craniometric landmarks can be found manually by surgeon from the 3D rendered volume or 2D sagittal, axial, and coronal slices which are taken by CT. Since there are many landmarks on the skull, finding these manually is time-consuming, exhaustive, and occasionally inexact. These inefficiencies raise a demand for a automatic localization technique for craniometric landmark points. So in this paper, we propose a novel method through which we can automatically find these landmark points, which are useful for surgical purpose. Materials and Methods At first, we align the experimental data (CT volumes) using Frankfurt Horizontal Plane (FHP) and Mid Sagittal Plane(MSP) which are defined by 3 and 2 cranial landmark points each. The target landmark of our experiment is the anterior nasal spine. Prior to constructing a statistical cubic model which would be used for detecting the location of the landmark from a given CT volume, reference points for the anterior nasal spine were manually chosen by a surgeon from several CT volume sets. The statistical cubic model is constructed by calculating weighted intensity means of these CT sets around the reference points. By finding the location where similarity function (squared difference function) has the minimal value with this model, the location of the landmark can be found from any given CT volume. Results In this paper, we used 5 CT volumes to construct the statistical cubic model. The 20 CT volumes including the volumes, which were used to construct the model, were used for testing. The range of age of subjects is up to 2 years (24 months) old. The found points of each data are almost close to the reference point which were manually chosen by surgeon. Also it has been seen that the similarity function always has the global minimum at the detection point. Conclusion Through the experiment, we have seen the proposed method shows the outstanding performance in searching the landmark point. This algorithm would make surgeons efficiently work with morphological informations of skull. We also expect the potential of our algorithm for searching the anatomic landmarks not only cranial landmarks.

Accuracy of Nodal Staging with Integrated PET/CT Scanning in Non-small Cell Lung Cancer (양전자단층촬영/전산화단층촬영(integrated PET/CT)을 이용한 비소세포폐암의 림프절 병기판정)

  • Kim, Ji-Hoon;Chung, Won-Sang;Kim, Young-Hak;Kim, Hyuck;Jeon, Seok-Chol
    • Journal of Chest Surgery
    • /
    • v.43 no.6
    • /
    • pp.700-704
    • /
    • 2010
  • Background: For staging primary lung cancer, integrated positron emission tomography/computed tomography (PET/CT) imaging is popular. The purpose of this study was to evaluate the accuracy of PET/CT scanning in lymph nodal staging of lung cancer. Material and Method: We studied 48 patients who had received CT, PET/CT and pulmonary resections due to primary non-small cell lung cancer in our hospital between January 2006 and August 2009. Mediastinal lymph nodes were classified as superior mediastinal nodes, aortic nodes, inferior mediastinal nodes, or N1 nodes. We compared the power of CT and PET/CT for diagnosing pulmonary lymph nodes for each of the four types of nodes. Result: PET/CT was more sensitive than CT for all groups except inferior mediastinal nodes. However, the differences were not significant (McNemar's test: superior mediastinal nodes, p=0.109; aortic nodes, p=1.000; inferior mediastinal nodes, p=0.625, N1 nodes, p=0.424). Conclusion: The accuracy of PET/CT is similar to that of CT alone for staging lymph nodes. The two imaging modalities might be used as complementary, cooperative tools. We expect that integrated PET/CT will be found to be significantly mmore sensitive after more trials are done and more data is accumulated.

Full mouth rehabilitation of a patient using monolithic zirconia and dental CAD/CAM system: a case report (단일구조 수복용 지르코니아와 Dental CAD/CAM System을 이용한 전악 임플란트 고정성 보철 수복 증례)

  • Lee, Sang-Hoon;Yoon, Hyung-In;Yeo, In-Sung;Han, Jung-Suk;Kim, Sung-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.3
    • /
    • pp.196-207
    • /
    • 2018
  • An accurate implant placement with ideal location is significant for long-term success of the implant. An exact evaluation of nearby anatomic structures such as quality of residual bone, an inferior alveolar bone and a maxillary sinus is required. For a prosthetic-driven treatment, planned surgery, precise prosthesis and communication with the patient are significant requisites especially for full-mouth rehabilitation. In this case, the patient with severe alveolar bone resorption had a CT guided surgery supported by CT data and the data from scanning diagnostic wax-up. Afterward, edentulous area was restored by full mouth implant-supported prosthesis by using monolithic zirconia and CAD/CAM technique. This paper reports the outcome of the procedure which was remarkable both esthetically and functionally.

SURGICAL STENT FABRICATION AND CLINICAL APPLICATION FOR ORTHOGNATHIC SURGERY USING Cone-Beam CT (Cone-Beam CT를 이용한 악교정 수술용 스텐트 제작과 임상 적용)

  • Kim, Yong-Il;Kim, Jong-Ryoul;Kim, Seong-Sik;Son, Woo-Sung;Park, Soo-Byung
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.158-166
    • /
    • 2009
  • The application of CT with basis on 3 dimensional-reconstruction is getting more widely practiced. With the data obtained from cone-beam computed tomography(CBCT), not only the diagnosis of the patient with skeletal abnormality but also the virtual simulation of the orthognathic surgery were performed and its application would be popular in orthodontic field. We reported a case, a 19-year old man who was diagnosed mandibular prognathism and required orthognatic surgery. In this case, the virtual orthognathic surgery was simulated and surgical wafer was fabricated by using CBCT data. That wafer was applied the actual orthognathic surgery. After preoperative orthodontic treatment, we prepared surgery as follows. : (l)Acquisition of 3D image data, (2)Reconstruction of 3-dimensional virtual model, (3)Virtual model surgery, (4)Extraction of stere-olithographic image, (5)Check-up for occlusal interference, (6)Fabrication of surgical stent by stereolithography. Bilateral sagittal split ramus osteotomy was operated and used stereolithographic surgical stent. 1 month later, we superimposed CBCT datas of virtual surgery and that of actual surgery, and then compared the result. CT data's application for othognathic surgery yielded satisfactory outcomes.

Evaluation of Image Quality in Micro-CT System Using Constrained Total Variation (TV) Minimization (Micro-CT 시스템에서 제한된 조건의 Total Variation (TV) Minimization을 이용한 영상화질 평가)

  • Jo, Byung-Du;Choi, Jong-Hwa;Kim, Yun-Hwan;Lee, Kyung-Ho;Kim, Dae-Hong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.252-260
    • /
    • 2012
  • The reduction of radiation dose from x-ray is a main concern in computed tomography (CT) imaging due to the side-effect of the dose on human body. Recently, the various methods for dose reduction have been studied in CT and one of the method is a iterative reconstruction based on total variation (TV) minimization at few-views data. In this paper, we evaluated the image quality between total variation (TV) minimization algorithm and Feldkam-Davis-kress (FDK) algorithm in micro computed tomography (CT). To evaluate the effect of TV minimization algorithm, we produced a cylindrical phantom including contrast media, water, air inserts. We can acquire maximum 400 projection views per rotation of the x-ray tube and detector. 20, 50, 90, 180 projection data were chosen for evaluating the level of image restoration by TV minimization. The phantom and mouse image reconstructed with FDK algorithm at 400 projection data used as a reference image for comparing with TV minimization and FDK algorithm at few-views. Contrast-to-noise ratio (CNR), Universal quality index (UQI) were used as a image evaluation metric. When projection data are not insufficient, our results show that the image quality of reconstructed with TV minimization is similar to reconstructed image with FDK at 400 view. In the cylindrical phantom study, the CNR of TV image was 5.86, FDK image was 5.65 and FDK-reference was 5.98 at 90-views. The CNR of TV image 0.21 higher than FDK image CNR at 90-views. UQI of TV image was 0.99 and FDK image was 0.81 at 90-views. where, the number of projection is 90, the UQI of TV image 0.18 higher than FDK image at 90-views. In the mouse study UQI of TV image was 0.91, FDK was 0.83 at 90-views. the UQI of TV image 0.08 higher than FDK image at 90-views. In cylindrical phantom image and mouse image study, TV minimization algorithm shows the best performance in artifact reduction and preserving edges at few view data. Therefore, TV minimization can potentially be expected to reduce patient dose in clinics.

CT compensating algorithm Based on a Digital Signal Processor (DSP를 이용한 변류기 보상 알고리즘)

  • Kang, Yong-Cheol;Lee, Byung-Eun;So, Soon-Hong;Hwang, Tae-Keun;Lee, Ji-Hoon;Cha, Sun-Hee;Kim, Yeon-Hee;Jang, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.255-257
    • /
    • 2005
  • This paper proposes a compensating algorithm of a measurement torrent transformer (CT) using DSP. The core flux is calculated and then magnetizing current is estimated in accordance with the flux-magnetizing current curve. The core loss current is obtained with the core loss resistance and the secondary voltage. The correct secondary current is estimated by adding the exciting current to the measured secondary current. The performance of the proposed algorithm was tested using EMTP generated data. The experiment on the real CT was conducted using the prototype compensated system based on a digital signal processor. The results indicate that the algorithm can increase the accuracy of the measurement CT significantly.

  • PDF

Clinical Application of $^{18}F-FDG$ PET in Malignant Mesothelioma (악성중피종에서 $^{18}F-FDG$ PET의 임상응용)

  • Lee, Eun-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.157-161
    • /
    • 2008
  • Malignant pleural mesothelioma (MPM) has a poor prognosis and a strong association with exposure to asbestos. Although there are not generally accepted guidelines for treatment of MPM, recent reports suggest that multi modality therapy combining chemotherapy, radiotherapy, and surgery can improve the survival of patients with MPM. Therefore exact staging is required to decide the best treatment option. However, it is well known that there are many difficulties in determining precise preoperative stage, predicting prognosis, and monitoring response to therapy with conventional imaging modalities such as CT and MRI in MPM. Recently PET with $^{18}F-FDG$ comes into the spotlight as an important staging method. There is increasing evidence that PET is superior to other conventional imaging modalities in diagnosis and staging of MPM. Particularly PET/CT improves the diagnostic and staging accuracy over PET or CT alone in MPM because it provides anatomic imaging data as well as functional information. PET and PET/CT are also useful for monitoring response to therapy and SUV is reported as a prognostic factor in MPM.