• Title/Summary/Keyword: CT (computed tomography)

Search Result 2,650, Processing Time 0.033 seconds

Comparison of Predicted Postoperative Lung Function in Pneumonectomy Using Computed Tomography and Lung Perfusion Scans

  • Kang, Hee Joon;Lee, Seok Soo
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.487-493
    • /
    • 2021
  • Background: Predicting postoperative lung function after pneumonectomy is essential. We retrospectively compared postoperative lung function to predicted postoperative lung function based on computed tomography (CT) volumetry and perfusion scintigraphy in patients who underwent pneumonectomy. Methods: Predicted postoperative lung function was calculated based on perfusion scintigraphy and CT volumetry. The predicted function was compared to the postoperative lung function in terms of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1), using 4 parameters: FVC, FVC%, FEV1, and FEV1%. Results: The correlations between postoperative function and predicted function based on CT volumetry were r=0.632 (p=0.003) for FVC% and r=0.728 (p<0.001) for FEV1%. The correlations between postoperative function and predicted postoperative function based on perfusion scintigraphy were r=0.654 (p=0.002) for FVC% and r=0.758 (p<0.001) for FEV1%. The preoperative Eastern Cooperative Oncology Group (ECOG) scores were significantly higher in the group in which the gap between postoperative FEV1 and predicted postoperative FEV1 analyzed by CT was smaller than the gap analyzed by perfusion scintigraphy (1.2±0.62 vs. 0.4±0.52, p=0.006). Conclusion: This study affirms that CT volumetry can replace perfusion scintigraphy for preoperative evaluation of patients needing pneumonectomy. In particular, it was found to be a better predictor of postoperative lung function for poor-performance patients (i.e., those with high ECOG scores).

A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography (C-arm CT의 필수 성능평가 기준 마련을 위한 연구)

  • Kim, Eun-Hye;Park, Hye-Min;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.

Hepatocellular Carcinoma: Texture Analysis of Preoperative Computed Tomography Images Can Provide Markers of Tumor Grade and Disease-Free Survival

  • Jiseon Oh;Jeong Min Lee;Junghoan Park;Ijin Joo;Jeong Hee Yoon;Dong Ho Lee;Balaji Ganeshan;Joon Koo Han
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.569-579
    • /
    • 2019
  • Objective: To investigate the usefulness of computed tomography (CT) texture analysis (CTTA) in estimating histologic tumor grade and in predicting disease-free survival (DFS) after surgical resection in patients with hepatocellular carcinoma (HCC). Materials and Methods: Eighty-one patients with a single HCC who had undergone quadriphasic liver CT followed by surgical resection were enrolled. Texture analysis of tumors on preoperative CT images was performed using commercially available software. The mean, mean of positive pixels (MPP), entropy, kurtosis, skewness, and standard deviation (SD) of the pixel distribution histogram were derived with and without filtration. The texture features were then compared between groups classified according to histologic grade. Kaplan-Meier and Cox proportional hazards analyses were performed to determine the relationship between texture features and DFS. Results: SD and MPP quantified from fine to coarse textures on arterial-phase CT images showed significant positive associations with the histologic grade of HCC (p < 0.05). Kaplan-Meier analysis identified most CT texture features across the different filters from fine to coarse texture scales as significant univariate markers of DFS. Cox proportional hazards analysis identified skewness on arterial-phase images (fine texture scale, spatial scaling factor [SSF] 2.0, p < 0.001; medium texture scale, SSF 3.0, p < 0.001), tumor size (p = 0.001), microscopic vascular invasion (p = 0.034), rim arterial enhancement (p = 0.024), and peritumoral parenchymal enhancement (p = 0.010) as independent predictors of DFS. Conclusion: CTTA was demonstrated to provide texture features significantly correlated with higher tumor grade as well as predictive markers of DFS after surgical resection of HCCs in addition to other valuable imaging and clinico-pathologic parameters.

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino;Andreas Fontalis;Ahmed Magan;Ricci Plastow;Fares S. Haddad
    • Hip & pelvis
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.

Comparative Analysis of Preoperative and Postoperative Muscle Mass around Hip Joint by Computed Tomography in Patients with Hip Fracture

  • Sung Yoon Jung;Hyeon Jun Kim;Kyu Taek Oh
    • Hip & pelvis
    • /
    • v.34 no.1
    • /
    • pp.10-17
    • /
    • 2022
  • Purpose: This study was conducted in order to assess changes in hip muscles by comparing results of preoperative and postoperative computed tomography (CT) in older patients who underwent surgery for treatment of hip fracture. Materials and Methods: A total of 50 patients (aged ≥65 years) who underwent surgery for treatment of intertrochanteric fractures (25 patients) and femoral neck fractures (25 patients) between February 2013 and February 2019 and underwent preoperative and postoperative pelvic CT were enrolled in the study. The cross-sectional area, attenuation and estimates of muscle mass of the gluteus medius, gluteus minimus, iliopsoas, and rectus femoris on the uninjured side were measured. Basic patient data (sex, age, height, weight, body mass index [BMI], bone mineral density [BMD], Harris hip score [HHS], and length of follow-up) were collected from medical records. Results: No significant differences in sex, age, height, weight, BMI, BMD, HHS, and length of follow-up were observed between the two groups. No significant difference in the cross-sectional areas and attenuations of gluteus medius and gluteus minimus was observed after surgery; however, a statistically significant decrease was observed in those of iliopsoas and rectus femoris after surgery. Lower estimates with statistical significance of muscle mass of the iliopsoas and rectus femoris were observed on postoperative CT. Conclusion: Muscle mass of the hip flexor (iliopsoas, rectus femoris) showed significant decreases on postoperative CT compared with preoperative CT. Based on these findings, selective strengthening exercise for hip flexor should be beneficial in rehabilitation of hip fractures.

Tricuspid Valve Imaging and Right Ventricular Function Analysis Using Cardiac CT and MRI

  • Yura Ahn;Hyun Jung Koo;Joon-Won Kang;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1946-1963
    • /
    • 2021
  • Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (CMR) can reveal the detailed anatomy and function of the tricuspid valve and right ventricle (RV). Quantification of tricuspid regurgitation (TR) and analysis of RV function have prognostic implications. With the recently available transcatheter treatment options for diseases of the tricuspid valve, evaluation of the tricuspid valve using CT and CMR has become important in terms of patient selection and procedural guidance. Moreover, CT enables post-procedural investigation of the causes of valve dysfunction, such as pannus or thrombus. This review describes the anatomy of the tricuspid valve and CT and CMR imaging protocols for right heart evaluation, including RV function and TR analyses. We also demonstrate the pre-procedural planning for transcatheter treatment of TR and imaging of postoperative complications using CT.

Availability of Positron Emission Tomography-Computed Tomography for the Diagnosis of the Soft Tissue Tumor through Ultrasound-Guided Biopsy (초음파 유도하 침 생검을 이용한 연부조직 종양의 진단에 있어 양전자방출 컴퓨터 단층촬영술의 유용성)

  • Jun, Se Bin;Kim, Jeung Il;Lee, In Sook;Song, You Seon;Choi, Kyung Un
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.5
    • /
    • pp.398-403
    • /
    • 2021
  • Purpose: A biopsy is needed to diagnose soft tissue tumors. However, it is extremely difficult to pinpoint the site of a tumor due to the heterogeneity of sarcomas. Thus, even when an open biopsy is conducted, it is difficult to diagnose a soft tissue tumor. In such cases, an ultrasound (US)-guided biopsy is used to improve the diagnostic accuracy. This study evaluated the accuracy of US-guided biopsy for a diagnosis of soft tissue tumors found initially in a magnetic resonance (MR) perfusion and assessed the availability of positron emission tomography-computed tomography (PET-CT) for a diagnosis of soft tissue tumors. Materials and Methods: From January 2014 to December 2018, the US-guided biopsy was performed on 152 patients with a suspected soft tissue tumor found in an MR perfusion and 86 cases were definitively diagnosed with a soft tissue tumor. The accuracy of the US-guided biopsy was assessed retrospectively. Among the 86 cases, only MR perfusion was used before the biopsy in 50 cases, while both MR perfusion and PET-CT was conducted on 36 cases. The accuracy was analyzed to determine if the PET-CT could improve the precision of a biopsy. Results: From 86 cases, 34 out of 50 cases, in which only MR perfusion had been conducted, matched the result of the definitive diagnosis and the US-guided biopsy. 32 out of 36 cases, in which both PET-CT and MR perfusion were conducted, matched the definitive diagnosis and the US-guided biopsy. These results show significant differences in the accuracy of US-guided biopsy. In the case of soft tissue sarcomas, 6 out of 12 cases, in which only MR perfusion had been conducted, matched the result of the definitive diagnosis and the US-guided biopsy. 17 out of 18 cases, in which both PET-CT and MR perfusion were conducted, matched the definitive diagnosis. Moreover US-guided biopsy also showed significant differences in the accuracy of US-guided biopsy. Conclusion: In diagnosing soft tissue tumors, a US-guided biopsy is a well-known tool for its high accuracy. However, the heterogeneity of sarcoma makes it difficult to locate the exact site for a biopsy using only MR perfusion. Thus, the use of PET-CT will meaningfully improve the accuracy of a diagnosis by precisely targeting the site for the US-guided biopsy.

Measurement of Space Dose Distribution during Exposure Micro Computed Tomography (μ-CT) for Scattering Rays (Micro-CT 촬영 시 발생되는 산란선에 관한 공간선량률 측정)

  • Jung, Hongmoon;Won, Doyeon;Kwon, Taegeon;Jung, Jaeeun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Non-invasive technique CT, called automated computed tomography, is used to detect lesion of a patient when diagnosing human body. Information obtained from CT plays an important role in assembling 3 dimensional images. Recently, new equipment, operated by CT, is required which can be appliable to physical and biological research. In accordance to this quest, micro-CT is invented that produce more detail and concrete information. Images supplied by CT are even more detailed and concrete, so it contributes much to the development of biology and polymer material engineering field. However, there has been little reliable reports regarding measuring information of space dose distribution about exposure dose limit of users operating micro-CT. In addition, little reports regarding space dose distribution of exposure has been known about unwanted diffraction light produced by usage of micro-CT. The exterior of micro-CT is covered by lead, which is for removing exposure of diffraction light. Thus, even if it is good enough to prevent exposure of diffraction light, consistent management of equipment will be required as time goes by and equipment are getting old as well. We measured space dose distribution regarding exposure of diffraction light of users operating micro-CT directly. Therefore, we suggest that proper management should be necessary for users operating micro-CT not to be exposed by unwanted diffraction light.

Analysis and Evaluation of Computed Tomography Dose Index (CTDI) of Pediatric Brain by Hospital Size (병원규모별 소아 두부 CT 검사 선량지표 분석 평가)

  • Kim, Hyeonjin;Lee, Hyoyeong;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.503-510
    • /
    • 2016
  • Even though children are exposed to the same amount of radiation, their effective dose amount is higher than those of adults. Therefore, it is very important to reduce the amount of unnecessary radiation exposure because children have a higher radiosensitivity and a smaller body size than adults. In this study, the proposal to seek ways to reduce the amount of radiation is drawn by comparing and analyzing CT Dose Index(CTDI) on the pediatric head CT which was performed at the Busan regional hospitals, to the national diagnostic reference levels. For this, the pediatric head CT scan was conducted among the CT equipments that were installed in downtown Busan. From 2,043 children 10 years old or less who were referred to the pediatric head CT scan, targeting the 28 CT equipments in the 24 hospitals that transmit dose reports to PACS, were examined retrospectively. As a result, the average value of CTDIvol, computed tomography dose index (CTDI) of infant brain, across the hospital, was 31.18 mGy, with DLP of $444.73mGy{\cdot}cm$, which exceeded the diagnostic reference level. The lower the age, the more management is needed for radiation. However, the reality is that the CT examinations are being conducted with a dose that exceeds the reference level as the age of the aged is exceeded. For this purpose, the study seeks to determine the degree of doses of doses outside the diagnostic reference level and analyze the cause of the excess dose and devise measures to reduce the dose reduction.