• Title/Summary/Keyword: CT형강

Search Result 5, Processing Time 0.013 seconds

An Experimental Study on Structural Capacity of Joint Between Composite PHC Wall Pile and Bottom Slab with CT Shear Connector (CT형강 전단연결재가 적용된 합성형 PHC벽체파일-하부슬래브 연결부 성능에 관한 실험적 연구)

  • Mha, Ho Seong;Won, Jeong Hun;Lee, Jong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2013
  • This paper investigated the structural capacity of the CT shear connectors, which is a kind of the perfobond rib and functions as an anchor transferring the tension force in the joint between a composite PHC wall pile and a bottom slab. The direct pull-out test was performed for various specimens. From failure modes and load-displacement curves, it was found that transverse rebars should be placed to holes in a web to restrict pull-out failure of CT shear connectors. The results of additional tests for specimens with transverse rebars and various support lengths indicated that all specimens were failed by the tension failure of PHC pile before pull-out failure of CT shear connector and concrete pull-out failure. Thus, the CT shear connector could endure the tension force between the PHC wall pile and the bottom slab.

A Study on Flexural Behavior of Composite PHC pile with CT Structural Steel (PHC파일과 CT형강을 합성한 합성형 벽체파일의 휨거동에 대한 연구)

  • Mha, Ho-Seong;Won, Jeong-Hun;Cho, Hyo-Sang
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.233-243
    • /
    • 2012
  • This study verifies the structural capacity of the composite PHC pile (Pretensioned spun high-strength concrete) consisting of a PHC pile and two CT structural steels. Four full-scale specimens are fabricated and the experimental tests were performed to investigate the flexural behaviors of the composite PHC piles. The composite PHC pile can enhance both the structural capacity and functional convenience, since the web of CT structural steel with holes in the web acts as a shear connector (referred to as the perfobond rib), which can connect concrete and steel. All specimens exhibited flexural failure and the ultimate strengths were larger than the anticipated design strength according to the design standard. Thus, the composite PHC pile can be applicable to wall structures with sufficient strength. In addition, it seems that the web of the CT structural steel with holes performs its role as shear connectors.

Algorithm to Shorten Imaging Time in Fluorescent X-ray Computed Tomogrpahy (형광 X선 CT에서 촬상 시간의 단축화 알고리즘)

  • 정남채
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 2001
  • In this paper it was examined both imaging system and processing algorithm for imaging's high speedization of fluorescent X-ray computed tomography using synchrotron radiation, The electronic system was used for dead time by about 6% but shortening of measure time was achieved by 2 seconds per 1 point. Also efficiency of reconstruction algorithm was proved, and memory and calculation amount was decreased by about 1/100 The fixed quantity was confirmed by physical phantom, and iodine distribution was presumed from image of thyroid gland in vitro These result shows realization possibility of fluorescent X-ray computed tomography measure in vivo.

  • PDF

Experimental Evalution of Structural Behavior on SRC type TEC-BEAM to RC Column Connection (SRC형 TEC-BEAM과 RC기둥 접합부 구조적 거동의 실험적 평가)

  • Ju, Young Kyu;Kim, Do Hyun;Chung, Kwang Ryang;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.463-470
    • /
    • 2002
  • The TEC-Beam system is a composite beam consisting of structural tee, precast concrete, and cast-in-site reinforced concrete slab. The preliminary test of the proposed system was performed for simple beams, showing good behavior. However, for the field application of the system. TEC-Beam - RC column connection was required to produce a mechanism that transfers the force occurring in the lower part of the TEC-Beam. Thus, this study developed a connection mechanism that transfers the force occurring in the lower part of the TEC-Beam. Thus, this study developed a connection wherein the section of the TEC-Beam was enlarged and the lower part reinforced. Two setups of the proposed system were experimentally investigated. using the anchorage length of reinforcement., i.e., length of the increased section, as test parameter. It could be concluded from the result that the proposed system shows good structural behavior, with potential applicability in the field.

Analysis of the Load Carrying Behavior of Shear Connection at the Interface of Encased Composite Beams (매입형 합성보의 전단합성거동에 대한 비교분석)

  • Shin, Hyun Seop;Heo, Byung Wook;Bae, Kyu Woong;Kim, Keung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.67-79
    • /
    • 2008
  • In this study, a bending test with three encased composite beams were carried out and analyzed using FEM in order to find how chemical adhesion, interface interlock, friction and composite action by shear studs contribute to stiffness, strength and composite action in the interface of encased compo site beams. The test and results of the FEM analysis showed that the difference in the ultimate moment capacity of the composite beams with and without studs is under 10%. The reason is that the effect of chemical adhesion, interface interlock, and friction in the interface on the composite action is so high that the encased beams have a moment capacity above some defined magnitude. Also, the increment of moment capacity up to plastic moment is not large and the increase of linearly proportioned.