• Title/Summary/Keyword: CSTR 모델

Search Result 9, Processing Time 0.019 seconds

Application of Continuous Stirred Tank Reactor Model for Water Quality Control and Management in Wetland Treatment (습지의 수질관리를 위한 연속교반탱크반응기 모델의 적용)

  • Kim, Kyung-Sub;Ahn, Tae-Jin;Kim, Min-Su
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.243-249
    • /
    • 2008
  • Continuous stirred tank reactor(CSTR) model which can be applied to control and management of the surface flow wetland is developed to simulate the water quality in this research. The model solution is obtained from the optimization model using the least-squares and 4th-order Runge-Kutta methods. The model is applied to simulate BOD and TSS in the wetland database of U.S. EPA, in which the hydraulic and water quality data are enough and the number of pond is just one for simple analysis of running results. The model is tested in two different cases, one constant volume case and another constant volume and flow rate case considering only reaction term, mass flux term and both reaction and mass flux terms respectively. It is found that the model simulates the real water quality very well with both reaction and mass flux terms rather than only reaction term and the settling velocity of TSS becomes $0.3{\sim}0.4\;m/d$. The model can be applied in wetlands treatment efficiently.

The effects of turbulence models on the numerical analysis of CSTR (난류모델이 완전혼합반응조 수치해석에 미치는 영향 연구)

  • Im, Yeong-Taek;Park, No-Seok;Kim, Seong-Su;Lee, Beom-Hui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.375-382
    • /
    • 2011
  • The usages of CFD (Computational Fluid Dynamics) which is simulating turbulent flows in CSTRs (Complete Stirrer Tank Reactors) have been reported. Considering model strategies and simulation techniques, this paper is focused on the turbulence models. The results of this study would suggest multiple reference frameworks relevant to rotational flow simulation. Specifically, the analysis of turbulence dissipation rates referred to this study would solve the relevant environmental engineering problem and would be beneficial to the CFD in CSTRs using mechanical mixer.

Development of RTD Model of the Mixer-Settler-Type Extractor Using the Stimulus-Response Method (자극-반응법(反應法)을 이용(利用)한 혼합침강형(混合沈降型) 추출장치(抽出裝置)의 RTD 모델 개발(開發))

  • Lee, Jin-Young;Kim, Joon-Soo;Lee, Hoo-In;Sohn, Jeong-Soo
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.65-70
    • /
    • 2007
  • This study presents the findings of the experiments that were conducted on single- and multi-stage solvent extractors using the stimulus-response method, with the am of identifying flow characteristics of the material inside the mixer-settler-type extractor. The results of this study show that the response characteristics of a single-stage mixer is the same as that of a completely stirred tank reactor (CSTR), and that the lag time of a mixer-settler-type extractor increases with the number of its extraction stages. The experimental data for the single- and multiple-stage extractors were analyzed using K-RTD, a response analysis program, to obtain a retention time distribution (RTD) model of one-stage and four-stage extractors. The correlation coefficient between the calculated values and the experimental data was 0.963 for the one-stage extractor and 0.995 for the four-stage extractor, showing quite a good correlation.

Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film (실리콘 산화막의 플라즈마 식각에 대한 표면반응 모델링)

  • Im, YeonHo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.520-527
    • /
    • 2006
  • A realistic surface model is presented for prediction of various surface phenomena such as polymer deposition, suppression and sputtering as a function of incidence ion energy in high density fluorocarbon plasmas. This model followed ion enhanced etching model using the "well-mixed" or continuous stirred tank reactor (CSTR) assumption to the surface reaction zone. In this work, we suggested ion enhanced polymer formation and decomposition mechanisms that can capture $SiO_2$ etching through a steady-state polymer film on $SiO_2$ under the suppression regime. These mechanisms were derived based on experimental data and molecular dynamic simulation results from literatures. The model coefficients are obtained from fits to available beam and plasma experimental data. In order to show validity of our model, we compared the model results to high density fluorocarbon plasma etching data.

Generation of fault diagnosis knowledge base using dynamic simulation (동적 모사를 이용한 이상 진단 지식 모델 합성)

  • 윤여홍;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.570-575
    • /
    • 1993
  • 화학 공정에서의 이상 진단 시스템 개발 및 응용에 대한 연구는 지난 5년간 많은 발전이 이루어졌다. 화학 공정의 본질적인 특성으로 대형 시스템, 비선형 특성, 모델링 자체의 어려움, 공정 변수의 large dead time 및 복잡한 인과 관계등을 들수 있으며, 이러한 어려움에도 불구하고 적절한 이상 진단 시스템의 중요성을 인식하여, 초기에는 주로 rule-based approach가 도입되어 현장에서의 조업에 많은 도움을 주었었다. 그러나 개발 기간의 단축화, 개발 과정의 표준화 뿐 아니라 개발된 시스템 자체의 일관성 등을 위하여 체계적인 접근 방법이 필요하게 되었으며, 그중 지식 베이스 합성 문제는 그 동안 활발하게 연구되어 오고 있는 분야이다. 이에 본 연구에서는 기호화된 정성적인 정보를 얻기위한 기존의 실험 방법의 한계를 극복하고자 동적 모사를 이용하여 정량적인 정보로부터 정성적인 정보를 생성시키는 방법론에 대해 연구하였다. CSTR(Continuous Stirred Tank Reactor)에서 나타날수 있는 이상의 종류에 대한 동적 모사를 수행하여 이상 진단 시스템을 위한 지식이 생성되는 과정을 보였다.

  • PDF

Analysis of the Water Quality Change Due to Water Level Control of Sayeon Dam (사연댐 수위조절시 수질변화 분석)

  • Lee, Sang Hyeon;Cho, Hong Je
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1069-1078
    • /
    • 2013
  • The Bangudae Petroglyphs, national treasure No. 285 is located within submerged upper districts of Sayeon dam supplying the main residential water in Ulsan. Of the many ways for the reservation of Petroglyphs located the altitude at 53~57 m, the plan that we take it out of the water lowering the water level from 60 m to 52 m has been examined mainly in case of controlling artificially the water level of the dam. In this paper, we examined expected problems from the loss of dam function and the change of water quality from water deterioration caused by the water level control of the Sayeon dam. Using the model of Vollenweider and CSTR (Continuous Stirred Tank Reactor), we analyzed the density change of BOD and COD, representative water quality index and the TP and TN, the main reason of algae growth. The result showed that the density of COD lowered a little but the density of TP and TN went up over 130% when controlling the water level from 60 m to 52 m. These changes cause a serious algae problem and if doing the water quality management as the density of TN and TP, the water quality would become worse. Water storage and supply residential water decreases, and the water quality becomes worse because of eutrophic state.

Synthesis of the Fault-Causality Graph Model for Fault Diagnosis in Chemical Processes Based On Role-Behavior Modeling (역할-거동 모델링에 기반한 화학공정 이상 진단을 위한 이상-인과 그래프 모델의 합성)

  • 이동언;어수영;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.450-457
    • /
    • 2004
  • In this research, the automatic synthesis of knowledge models is proposed. which are the basis of the methods using qualitative models adapted widely in fault diagnosis and hazard evaluation of chemical processes. To provide an easy and fast way to construct accurate causal model of the target process, the Role-Behavior modeling method is developed to represent the knowledge of modularized process units. In this modeling method, Fault-Behavior model and Structure-Role model present the relationship of the internal behaviors and faults in the process units and the relationship between process units respectively. Through the multiple modeling techniques, the knowledge is separated into what is independent of process and dependent on process to provide the extensibility and portability in model building, and possibility in the automatic synthesis. By taking advantage of the Role-Behavior Model, an algorithm is proposed to synthesize the plant-wide causal model, Fault-Causality Graph (FCG) from specific Fault-Behavior models of the each unit process, which are derived from generic Fault-Behavior models and Structure-Role model. To validate the proposed modeling method and algorithm, a system for building FCG model is developed on G2, an expert system development tool. Case study such as CSTR with recycle using the developed system showed that the proposed method and algorithm were remarkably effective in synthesizing the causal knowledge models for diagnosis of chemical processes.

A Pilot-Scale Study of Multiple Stage of Constructed Wetland Treatment System and Modeling for Nutrient Removal (Pilot 규모 연속배열형 인공습지의 영양염류 제거효능 규명 및 평가모델 연구)

  • Choi, Seung Il;Iamchaturapatr, Janjit;Rhee, Jae Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.781-788
    • /
    • 2010
  • A pilot study was performed to examine the feasibility of multiple stage of constructed wetland (CW) for nutrient removal. The system is composed of six wetland cells connected with water-ways. The hydraulic of wetland cells is designed as free water surface flow. The treatment capacity was $25m^3d^{-1}$ at HRT of about one day for each cell. The magnitude of nutrient removal was related with the length of wetlands and plant density. Total N and P removal rates were 1353 and $246mg\;m^{-2}d^{-1}$ respectively. The pilot-scale reactor was model as continuous flow system containing contribution of CSTR and PFR typed-reactors. The $k-C^*$ model equation was applied to predict N and P reduction. The result indicated the equation was well guided to estimate reduction of $NO_3-N$ and $PO_4-P$.

Design and Optimization of Pilot-Scale Bunsen Process in Sulfur-Iodine (SI) Cycle for Hydrogen Production (수소 생산을 위한 Sulfur-Iodine Cycle 분젠반응의 Pilot-Scale 공정 모델 개발 및 공정 최적화)

  • Park, Junkyu;Nam, KiJeon;Heo, SungKu;Lee, Jonggyu;Lee, In-Beum;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.235-247
    • /
    • 2020
  • Simulation study and validation on 50 L/hr pilot-scale Bunsen process was carried out in order to investigate thermodynamics parameters, suitable reactor type, separator configuration, and the optimal conditions of reactors and separation. Sulfur-Iodine is thermochemical process using iodine and sulfur compounds for producing hydrogen from decomposition of water as net reaction. Understanding in phase separation and reaction of Bunsen Process is crucial since Bunsen Process acts as an intermediate process among three reactions. Electrolyte Non-Random Two-Liquid model is implemented in simulation as thermodynamic model. The simulation results are validated with the thermodynamic parameters and the 50 L/hr pilot-scale experimental data. The SO2 conversions of PFR and CSTR were compared as varying the temperature and reactor volume in order to investigate suitable type of reactor. Impurities in H2SO4 phase and HIX phase were investigated for 3-phase separator (vapor-liquid-liquid) and two 2-phase separators (vapor-liquid & liquid-liquid) in order to select separation configuration with better performance. The process optimization on reactor and phase separator is carried out to find the operating conditions and feed conditions that can reach the maximum SO2 conversion and the minimum H2SO4 impurities in HIX phase. For reactor optimization, the maximum 98% SO2 conversion was obtained with fixed iodine and water inlet flow rate when the diameter and length of PFR reactor are 0.20 m and 7.6m. Inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion with fixed temperature and PFR size (diameter: 3/8", length:3 m). When temperature (121℃) and PFR size (diameter: 0.2, length:7.6 m) are applied to the feed composition optimization, inlet water and iodine flow rate is reduced by 17% and 22% to reach the maximum 10% SO2 conversion.