• Title/Summary/Keyword: CSRZ

Search Result 4, Processing Time 0.014 seconds

Bandwidth Effect on the Dispersion Monitoring of CSRZ Signal Based on Clock Component (CSRZ 신호의 클럭 성분을 이용한 색분산 감시법에서 송수신단 대역폭의 영향 분석)

  • Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1343-1349
    • /
    • 2013
  • In optical fiber communications, several newly-developed signal formats are used to obtain the best performance within limited spectral bandwidth. CSRZ (carrier-suppressed return-to-zero) format is one of the new signal formats, which has better spectral efficiency and better robustness to dispersion than RZ (return-to-zero) format. Thus it is widely used for demonstrating high-speed optical communication systems. In an earlier research, we proposed a clock-extraction method of CSRZ signal to monitor chromatic dispersion. However, the clock-frequency component extracted by the clock-extraction method can be affected by the bandwidth of a transmitter or a receiver. Therefore, in this paper, we investigate the effect of bandwidth on the chromatic dispersion monitoring of CSRZ signal based on clock-frequency component. As a result, we propose a couple of robust clock-extraction methods to monitor chromatic dispersion in CSRZ signal.

Demonstration of CSRZ Signal Generator Using Single-Stage Mach-Zehnder Modulator and Wideband CMOS Signal Mixer

  • Kang, Sae-Kyoung;Lee, Dong-Soo;Cho, Hyun-Woo;Ko, Je-Soo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.249-254
    • /
    • 2008
  • In this paper, we demonstrate an electrically band-limited carrier-suppressed return-to-zero (EB-CSRZ) signal generator operating up to a 10 Gbps data rate comprising a single-stage Mach-Zehnder modulator and a wideband signal mixer. The wideband signal mixer comprises inverter stages, a mixing stage, and a gain amplifier. It is implemented by using a 0.13 ${\mu}m$ CMOS technology. Its transmission response shows a frequency range from DC to 6.4 GHz, and the isolation response between data and clock signals is about 21 dB at 6.4 GHz. Experimental results show optical spectral narrowing due to incorporating an electrical band-limiting filter and some waveform distortion due to bandwidth limitation by the filter. At 10 Gbps transmission, the chromatic dispersion tolerance of the EB-CSRZ signal is better than that of NRZ-modulated signal in single-mode fiber.

  • PDF

Chromatic Dispersion Monitoring of CSRZ Signal for Optimum Compensation Using Extracted Clock-Frequency Component

  • Kim, Sung-Man;Park, Jai-Young
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.461-468
    • /
    • 2008
  • This paper presents a chromatic dispersion monitoring technique using a clock-frequency component for carrier-suppressed return-to-zero (CSRZ) signal. The clock-frequency component is extracted by a clock-extraction (CE) process. To discover which CE methods are most efficient for dispersion monitoring, we evaluate the monitoring performance of each extracted clock signal. We also evaluate the monitoring ability to detect the optimum amount of dispersion compensation when optical nonlinearity exists, since it is more important in nonlinear transmission systems. We demonstrate efficient CE methods of CSRZ signal to monitor chromatic dispersion for optimum compensation in high-speed optical communication systems.

  • PDF

Transmission of 200-Gb/s 2-channel OTDM-PAM4 Signal Based on CSRZ Pulse Generated by Mach-Zehnder Modulator (마하 젠더 변조기로 생성된 CSRZ 펄스 기반의 200 Gb/s OTDM-PAM4 신호의 전송)

  • Sunghyun Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.4
    • /
    • pp.151-156
    • /
    • 2023
  • We propose to implement cost-effectively a high-speed short-haul interconnect by transmitting a 200-Gb/s/λ two-channel optical time-division-multiplexed signal generated by a carrier-suppressed optical pulse, which improves the robustness of the multiplexed signal to chromatic dispersion. The multiplexed 200-Gb/s signal is generated in the transmitter by combining two 100-Gb/s 4-level pulse-amplitude-modulated signals (generated using the optical pulse and two Mach-Zehnder modulators). After the signal is transmitted over a fiber, it is amplified by a semiconductor optical amplifier and detected by a photodiode. The amplified spontaneous emission noise is eliminated by an optical band-pass filter. The transmitted signal is reconstructed by a 2 × 2 multiple-input multiple-output equalizer, which compensates for crosstalk. Due to the use of the carrier-suppressed optical pulse, the 200-Gb/s signal can be transmitted over fiber with a chromatic dispersion of 40 ps/nm.