• 제목/요약/키워드: CRISPR interference

검색결과 4건 처리시간 0.017초

Effective Blocking of Microbial Transcriptional Initiation by dCas9-NG-Mediated CRISPR Interference

  • Kim, Bumjoon;Kim, Hyun Ju;Lee, Sang Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1919-1926
    • /
    • 2020
  • CRISPR interference (CRISPRi) has been developed as a transcriptional control tool by inactivating the DNA cleavage ability of Cas9 nucleases to produce dCas9 (deactivated Cas9), and leaving dCas9 the ability to specifically bind to the target DNA sequence. CRISPR/Cas9 technology has limitations in designing target-specific single-guide RNA (sgRNA) due to the dependence of protospacer adjacent motif (PAM) (5'-NGG) for binding target DNAs. Reportedly, Cas9-NG recognizing 5'-NG as the PAM sequence has been constructed by removing the dependence on the last base G of PAM through protein engineering of Cas9. In this study, a dCas9-NG protein was engineered by introducing two active site mutations in Cas9-NG, and its ability to regulate transcription was evaluated in the gal promoter in E. coli. Analysis of cell growth rate, D-galactose consumption rate, and gal transcripts confirmed that dCas9-NG can completely repress the promoter by recognizing DNA targets with PAM of 5'-NGG, NGA, NGC, NGT, and NAG. Our study showed possible PAM sequences for dCas9-NG and provided information on target-specific sgRNA design for regulation of both gene expression and cellular metabolism.

Harnessing CRISPR-Cas adaptation for RNA recording and beyond

  • Gyeong-Seok Oh;Seongjin An;Sungchul Kim
    • BMB Reports
    • /
    • 제57권1호
    • /
    • pp.40-49
    • /
    • 2024
  • Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNA-guided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies.

CRISPR 간섭에 필요한 sgRNA 표적 인식 서열 길이의 결정 (Determination of the Length of Target Recognition Sequence in sgRNA Required for CRISPR Interference)

  • 김범준;김병찬;이호중;이상준
    • 한국미생물·생명공학회지
    • /
    • 제49권4호
    • /
    • pp.534-542
    • /
    • 2021
  • CRISPR/Cas를 이용한 유전체 편집과 유전자 발현 조절을 위한 기술에서 sgRNA는 표적서열을 인식하는 역할을 한다. gal 프로모터를 표적서열로 하여 유전체 편집에 필요한 sgRNA의 표적인식서열의 길이와 유전자 발현 조절에 필요한 sgRNA의 표적인식서열의 길이를 Cas9-NG에서 체계적으로 비교하였다. 유전체 편집의 경우, sgRNA의 표적인식서열을 구성하는 20개의 뉴클레오티드에서 3개의 뉴클레오티드의 결손만을 허용하였다. 하지만, 유전자 발현 조절에는 표적인식서열에서 11개의 뉴클레오티드가 결손되어도 표적서열을 인식하고 결합할 수 있다는 것을 밝혔다. 따라서, sgRNA의 표적인식서열에서 4개 이상의 뉴클레오티드의 결손이 있는 경우에 sgRNA/Cas9-NG는 표적 DNA 서열에 특이적으로 결합을 하지만, 엔도뉴클레아제의 활성을 갖지 못하기 때문에 유전체 편집을 할 수 없는 것으로 판단된다. 이 결과는 인공전사인자 개발과 합성생물학 분야의 다양한 CRISPR 기술 발전에 도움을 줄 것이다.

CRISPR/Cas9-mediated generation of a Plac8 knockout mouse model

  • Lee, HyunJeong;Kim, Joo-Il;Park, Jin-Sung;Roh, Jae-il;Lee, Jaehoon;Kang, Byeong-Cheol;Lee, Han-Woong
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.279-287
    • /
    • 2018
  • Placenta specific 8 (PLAC8, also known as ONZIN) is a multi-functional protein that is highly expressed in the intestine, lung, spleen, and innate immune cells, and is involved in various diseases, including cancers, obesity, and innate immune deficiency. Here, we generated a Plac8 knockout mouse using the CRISPR/Cas9 system. The Cas9 mRNA and two single guide RNAs targeting a region near the translation start codon at Plac8 exon 2 were microinjected into mouse zygotes. This successfully eliminated the conventional translation start site, as confirmed by Sanger sequencing and PCR genotyping analysis. Unlike the previous Plac8 deficient models displaying increased adipose tissue and body weights, our male Plac8 knockout mice showed rather lower body weight than sex-matched littermate controls, though the only difference between these two mouse models is genetic context. Differently from the previously constructed embryonic stem cell-derived Plac8 knockout mouse that contains a neomycin resistance cassette, this knockout mouse model is free from a negative selection marker or other external insertions, which will be useful in future studies aimed at elucidating the multi-functional and physiological roles of PLAC8 in various diseases, without interference from exogenous foreign DNA.