• Title/Summary/Keyword: CR-warped products

Search Result 3, Processing Time 0.016 seconds

CONTACT CR-WARPED PRODUCT SUBMANIFOLDS IN KENMOTSU SPACE FORMS

  • ARSLAN, KADRI;EZENTAS, RIDVAN;MIHAl, ION;MURATHAN, CENGIZHAN
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.5
    • /
    • pp.1101-1110
    • /
    • 2005
  • Recently, Chen studied warped products which are CR-submanifolds in Kaehler manifolds and established general sharp inequalities for CR-warped products in Kaehler manifolds. In the present paper, we obtain sharp estimates for the squared norm of the second fundamental form (an extrinsic invariant) in terms of the warping function for contact CR-warped products isometrically immersed in Kenmotsu space forms. The equality case is considered. Some applications are derived.

CR-WARPED PRODUCT SUBMANIFOLDS OF NEARLY KAEHLER MANIFOLDS

  • Al-Luhaibi, Nadia S.;Al-Solamy, Falleh R.;Khan, Viqar Azam
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.979-995
    • /
    • 2009
  • As warped product manifolds provide an excellent setting to model space time near black holes or bodies with large gravitational field, the study of these manifolds assumes significance in general. B. Y. Chen [4] initiated the study of CR-warped product submanifolds in a Kaehler manifold. He obtained a characterization for a CR-submanifold to be locally a CR-warped product and an estimate for the squared norm of the second fundamental form of CR-warped products in a complex space form (cf [6]). In the present paper, we have obtained a necessary and sufficient conditions in terms of the canonical structures P and F on a CR-submanifold of a nearly Kaehler manifold under which the submanifold reduces to a locally CR-warped product submanifold. Moreover, an estimate for the second fundamental form of the submanifold in a generalized complex space is obtained and thus extend the results of Chen to a more general setting.

GENERALIZED CHEN INEQUALITY FOR CR-WARPED PRODUCTS OF LOCALLY CONFORMAL KÄHLER MANIFOLDS

  • Harmandeep Kaur;Gauree Shanker;Ramandeep Kaur;Abdulqader Mustafa
    • Honam Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.47-59
    • /
    • 2024
  • The purpose of the Nash embedding theorem was to take extrinsic help for studying the intrinsic Riemannian geometry. To realize this aim in actual practice there is a need for optimal relationships between the known intrinsic invariants and the main extrinsic invariants for Riemannian submanifolds. This paper aims to provide an optimal relationship for CR-warped product submanifolds of locally conformal Kähler manifolds.