• Title/Summary/Keyword: CPW급전 안테나

Search Result 101, Processing Time 0.057 seconds

Design and Fabrication of the Printed Type Folded Slot Antenna (인쇄회로형 폴디드 슬롯 안테나 설계ㆍ제작)

  • 송면규;양규식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.301-304
    • /
    • 1999
  • In general, printed antennas have a narrow bandwidth characteristic and many people want to find out the method of bandwidth improvement through complicated procedure. So we want to reform the conventional printed antenna characteristic by using the folded dipole's superiority to unit dipole. But it is hard to feed thr printed folded dipole antenna, we use the CPW, which is widely used in microwave IC or MMIC applications and have many advantage to the conventional microstrip line, to feed the folded slot antenna. It is confirmed that the improvement in the bandwidth characteristic of CPW fed folded slot antenna, as much as 20%, through the measurment of designed and implemented antenna.

  • PDF

2.4GHz Compact Loop Slot Antenna with Vertical Slots (수직 슬롯을 갖는 CPW 급전 방식의 2.4GHz용 소형 루프 슬롯 안테나)

  • Kim, Gun-Kyun;Lee, Jong-Ig;Rhee, Seung-Yeop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.71-72
    • /
    • 2015
  • 본 논문에서는 CPW(Coplanar waveguide) 급전되는 평면 루프 슬롯을 2.45 GHz 대역 Wi-Fi용으로 소형화 설계하는 방법에 대해 연구하였다. 제안된 구조는 직사각형 형태의 CPW 급전 루프 슬롯 안테나를 기본형으로 하여 내부 패치에 슬롯을 좌우 대칭으로 여러 개 수직 방향으로 배치한 안테나이며, FR4 기판의 한 면에 인쇄된다. 여러 가지 파라미터 값들이 안테나의 특성에 미치는 영향을 관찰하고 기존 루프 슬롯 안테나를 소형화하는 방법에 대해 연구하였다. FR4 기판에 $80mm{\times}50mm$ 크기로 2.45 GHz 대역용으로 설계된 안테나의 특성을 시뮬레이션을 통해 분석하였다.

  • PDF

Design of Compact CPW-fed Slot Antenna Using Split-Ring Resonators (분할 링 공진기를 이용한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2351-2358
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input VSWR characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced to 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2, and measured gain of 2.3 dBi at 2.45 GHz.

Design of CPW-fed Slot Antenna for Harmonic Suppression (고조파 억제를 위한 CPW급전 슬롯 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • In this paper, a design method for a CPW-fed slot antenna for harmonic suppression is studied. The structure of the proposed slot antenna is a rectangular slot antenna appended with stepped impedance resonators (SIRs) at both ends of the slot symmetrically. Optimal design parameters are obtained by analyzing the effects of the length and width of the SIRs on the input reflection coefficient. The optimized harmonic-suppressed slot antenna operating at 2.45 GHz WLAN band is fabricated on an FR4 substrate with a dimension of 42 mm by 30 mm. The slot length of the proposed harmonic-suppressed slot antenna is reduced to 33.3% compared to that of a conventional rectangular slot antenna owing to the appended SIRs. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.39-2.49 GHz for a VSWR < 2, and a measured gain of 2.5 dBi at 2.45 GHz.

CPW-Fed π-Shaped Antenna for Wideband (CPW급전 광대역 파이형 안테나)

  • Kang, Young-Man;Ceong, Hyi-Thaek;Rhee, Seung-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.291-298
    • /
    • 2018
  • In this paper, we propose an antenna that improves narrow band characteristics which is a disadvantage of inverted-F type antenna and utilizes the structural advantages of small size and low profile by modifying the inverted-F type antenna structure and applying CPW feeding method. Experimental results show that the broadband characteristic of about 40% at the center frequency of 3 GHz is seen, and it is found that the narrow band characteristic which is a disadvantage of the conventional inverted F antenna can be improved. The radiation pattern showed almost omnidirectional characteristics and the maximum gain was about 2.0dBi.

Disk Sector Antenna fed by CPW for UWB Communications (UWB 통신용 CPW 급전 디스크 섹터 안테나)

  • Lim, Jung-Hyun;Lee, Min-Soo;Yang, Doo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.2
    • /
    • pp.303-312
    • /
    • 2009
  • In this paper, we design and fabricate a disk sector antenna fed by CPW fur UWB communications. Also, we insert a rectangular slit on the arc-edge of the disk sector antenna. Then, the antenna has the directivity of E-면. In order to design the antenna, the input impedance is matched with the feed line of $50{\Omega}$ as varying the physical antenna parameters, which are the radius, the flare angle of disk sector, the length of ground, and the length of ground comer near by feed tine. Dimension of the antenna designed for UWB communication is $72mm{\times}26mm$ and bandwidth through computer simulation is $3{\sim}13GHz$. From the measured results, the bandwidth is $1.98{\sim}11GHz$. Return loss and gain of the fabricated antenna are -50.38dB, 1.34dBi at 3.5GHz, -12.27dB, 3.35dBi at 5.5GHz, -23.2dB, 3.8dBi at 8GHz and -16.17dB, 5.2dBi at 10GHz, respectively.

CPW-fed Broadband Monopole Antenna for HDTV Reception (CPW로 급전되는 HDTV용 광대역 모노폴 안테나)

  • Lee, Jong-Ig;Han, Dae-Hee;Kim, Soo-Min;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.564-566
    • /
    • 2012
  • In this paper, a design method for a compact broadband planar monopole antenna fed by coplanar waveguide (CPW) is studied. The proposed broadband monopole is optimized for terrestrial digital television (DTV) receiving. The monopole is fed by a CPW with 75-ohm characteristic impedance on an FR4 substrate and its size is $100mm{\times}200mm$. A pair of slit is appended for size reduction and an inductive stub is loaded for the impedance matching between the feedline and monopole. The optimized monopole antenna for DTV band (470-806 MHz) is fabricated on an FR4 substrate and tested experimentally to verify the results of this study.

  • PDF

Design of a compact coplanar waveguide-fed 2-element quasi-Yagi antenna (코플래너 도파관으로 급전되는 소형 2-소자 준-야기 안테나 설계)

  • Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2199-2205
    • /
    • 2016
  • In this paper, a design method for a coplanar waveguide (CPW)-fed 2-element quasi-Yagi antenna (QYA) is studied. A balun between CPW and coplanar strip (CPS) which feeds a planar dipole is implemented by connecting the one end of ground strips in a CPW to a signal strip. The antenna size is reduced by bent strip dipole and reflector, and an integrated balun. The proposed antenna was designed for the operation in a UHF radio frequency identification (RFID) band of 902-928 MHz, and the effects of various parameters such as dipole length, reflector length, distance between dipole and reflector, feed position were examined. The antenna with a size of $90mm{\times}80mm$ was fabricated on an FR4 substrate, and the experiment results reveal a frequency band of 885-942 MHz for a voltage standing wave ratio < 2, a gain > 4.3 dBi, and a front-to-back ratio > 7 dB over the frequency band for the UHF RFID.

Design and Fabrication of the Hybrid Slot Antenna for Wireless LAN at 5.8㎓ Band (5.8㎓ 대역 무선 LAN용 하이브리드 슬롯 안테나 설계 및 제작)

  • 고수미;이권익;김흥수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.10
    • /
    • pp.21-26
    • /
    • 2002
  • In this paper, a hybrid slot antenna is designed and fabricated for wireless LAN at 5.8㎓ band. The hybrid slot antenna is consisted of the inductively-fed slot and capacitively-fed slot. To obtain wide bandwidth, the inductively-fed slot is designed at 5.3㎓ and the capacitively-fed slot is designed at 5.8㎓ Important parameters in the design are slot width and CPW length. The hybrid slot antenna is simulated by using Ensemble 6.0. The measured results of this antenna are compared with its simulated results. The resonant frequency of fabricated hybrid slot antenna is 5.8㎓, the bandwidth for VSWR<1.5 is 28% and the gain is 5 ㏈i. The 3-㏈ beamwidths in E-plane and H-plane are 60°and 44°, respectively.

Design of CPW-Feed Multi-Band Monopole Antenna for Next Generation WLAN Systems (차세대 WLAN을 위한 CPW 급전 다중대역 모노폴 안테나 설계)

  • Choi, Yong-Seok;Seong, Hyeon-Kyeong;Rho, Jung-Kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • In this paper, we designed a multiband monopole antenna for next-generation WLAN system. In conventional WLAN system, UWB antennas were used together, and, because the radiation occurs in different parts depending on the antenna structure, it has the disadvantage of having an unstable impulse response characteristic due to dispersion characteristics. Although a UWB antenna that has suitable radiation pattern for WLAN band, it does not have good impedance matching and has severe echo. Therefore, in this paper, a monopole antenna was designed by using CPW power feed so that various impedances can be easily implemented when designing an antenna and more parameters can be derived that can be used for design for optimal performance.