• Title/Summary/Keyword: CPW(coplanar-waveguide)

Search Result 174, Processing Time 0.024 seconds

CPW-fed Compact Slot Antenna Matched by T-shaped Stub (T형 스터브로 정합된 CPW급전 소형 슬롯 안테나)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3140-3145
    • /
    • 2012
  • In this paper, a design method for a compact slot antenna fed by a coplanar waveguide (CPW) is studied. A T-shaped tuning stub is inserted inside a narrow rectangular slot and the slot is impedance matched to the CPW feedline by adjusting the width, length, and position of the stub. The resonance frequency is adjustable by the slot length and the antenna size can be reduced by bending the slot. The resonance frequency and impedance matching property of the compact slot antenna are similar to those of the half-wavelength slot antenna, which enables one to design compact antenna of this type with ease. A compact slot antenna for 2.45-GHz ISM band is designed, fabricated on an FR4 substrate (dielectric constant of 4.4 and thickness of 0.8 mm), and experimentally tested. The measured results agree well with the simulations, which confirms the validity of this study. The fabricated compact slot antenna shows an impedance bandwidth of 200 MHz(2.32-2.52 GHz) for a VSWR < 2, which is suitable for 2.45-GHz ISM band (2.4-2.48 GHz). The measured radiation patterns show ${\infty}$-shaped directional pattern in the E-plane and nearly omni-directional pattern in the H-plane with a peak gain of 2.0 dBi, which are similar to those of a monopole antenna. The proposed antenna is expected to be suitable for the applications as antennas for WLAN, RFID, and mobile handset.

Design of a Multi-Band Antenna with CPWG Feed Line for the Telematics Mobile Device (Telematics 단말기를 위한 CPWG 급전방식 다중대역 안테나 설계 및 제작)

  • Jee, Bong-Soo;Jeong, Gye-Taek;Kim, Woo-Soo;Lee, Haw-Choon;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • In this paper, the multi-band antenna with CPWG(Coplanar Waveguide with Ground) feed for telematics mobile devices is designed and fabricated. The proposed antenna improves the return loss characteristic by using open-circuited stub matching and rectangular slot in the radiation patch. In addition, CPWG structure makes up for the drawback of the CPW which is variation of impedance matching according to the gap variation of the feed line and the ground. The fabricated antenna has 1.4GHz ($1.43GHz{\sim}2.83GHz$, 65%) band width on -10dB (VSWR<2) and the maximum gains are 0.8dBi, 1.34dBi, 2.41dBi, 2.53dBi, 2.6dBi and 1.51dBi on each resonant frequency that are GPS $(1.564GHz{\sim}1.585GHz)$, PCS/DCS $(1.710GHz{\sim}1.984GHz)$, WCDMA $(2.170GHz{\sim}2300GHz)$, Bluetooth/Wi-Fi/WLAN $(2.4GHz{\sim}2.483GHz)$, WiBro $(2.3GHz{\sim}2.4GHz)$, SDMB $(2.605GHz{\sim}2.655GHz)$. It also has an omni-directional radiation pattern of H-Plane.

  • PDF

The low conversion loss and low LO power V-band MIMIC Up-mixer (낮은 LO 입력 및 변환손실 특성을 갖는 V-band MIMIC Up-mixer)

  • Lee Sang Jin;Ko Du Hyun;Jin Jin Man;An Dan;Lee Mun Kyo;Cho Chang Shik;Lim Byeong Ok;Chae Yeon Sik;Park Hyung Moo;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, we present MIMIC(Millimeter-wave Monolithic Integrated Circuit) up-mixer with low conversion loss and low LO power for the V-band transmitter applications. The up-mixer was successfully integrated by using 0.1 ㎛ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide (CPW) structures. The circuit is designed to operate at RF frequencies of 60.4 GHz, IF frequencies of 2.4 GHz, and LO frequencies of 58 GHz. The fabricated MIMIC up-mixer size is 2.3 mmxl.6 mm. The measured results show that the low conversion loss of 1.25 dB when input signal is -10.25 dBm at LO power of 5.4 dBm. The LO to RF isolation is 13.2 dB at 58 GHz. The fabricated V-band up-mixer represents lower LO input power and conversion loss characteristics than previous reported millimeter-wave up-mixers.

Design of Active Antenna Diplexers Using UWB Planar Monopole Antennas (초광대역 평면형 모노폴 안테나를 이용한 능동 안테나 다이플렉서의 설계)

  • Kim, Joon-Il;Lee, Won-Taek;Chang, Jin-Woo;Jee, Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1098-1106
    • /
    • 2007
  • This paper presents active antenna diplexers implemented into an ultra-wideband CPW(Coplanar Waveguide) fed monopole antennas. The proposed active antenna diplexer is designed to direct interconnect the output port of a wideband antenna to the input port of two active(HEMT) devices, where the impedance matching conditions of the proposed active integrated antenna are optimized by adjusting CPW(Coplanar Waveguide) feed line to be the length of 1/20 $\lambda_0$(@5.8 GHz) in planar type wideband antenna. The measured bandwidth of the active integrated antenna shows the range from 2.0 GHz to 3.1 GHz and from 5.25 GHz to 5.9 GHz. The measured peak gains are 17.0 dB at 2.4 GHz and 15.0 dB at 5.5 GHz.

A Method to Reduce the Size of Amplifiers using Defected Ground Structure (결합된 접지 구조를 이용한 증폭기의 소형화 방법)

  • Lim, Jong-Sik;Park, Jun-Seok;Kim, Chul-Soo;Lee, Young-Tak;Ahn, Dal;Nam, Sang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.5
    • /
    • pp.436-444
    • /
    • 2002
  • This paper presents a new method, which uses defected ground structure (DGS) on the ground planes of planar transmission lines such as microstrip and coplanar waveguide (CPW), to reduce the size of amplifiers. The main idea can be summarized as follow; DGS on the ground plane of microstrip or CPW line shows an increased slow-wave effect due to the additional equivalent L-C components. So the electrical length of the transmission line with DGS is longer than that of the standard transmission line for the same physical length. Then, the length of the transmission line with DGS can be shortened in order to maintain the original electrical length to be the same. This leads the matching of the original amplifier to be kept. In order to show the proposed method is valid, two kinds of amplifiers, the original amplifier and reduced amplifier, are fabricated, measured, and compared using both microstrip and CPW. The measured performances of the reduced amplifiers with DGS are quite similar to the ones of the original amplifiers for both microstrip and CPW amplifiers, even though the size of matching networks of the amplifiers with DGS are much smaller than those of the original amplifiers.

Broadband W-band Tandem coupler using MIMIC technology (MIMIC 기술을 이용한 광대역 W-band Tandem 커플러)

  • Lee, Mun-Kyo;An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Lee, Sang-Jin;Moon, Sung-Woon;Jun, Byoung-Chul;Kim, Yong-Hoh;Yoon, Jin-Seob;Kim, Sam-Dong;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.105-111
    • /
    • 2007
  • In this paper, we designed and fabricated a 3-dB tandem coupler using air-bridge technology for millimeter-wane monolithic integrated circuits, operating at W-band($75{\sim}110\;GHz$) frequency. Tightly edge-coupled CPW line has low directivity due to different even-mode and odd-mode phase velocity. To overcome this disadvantage, a 3-dB tandem coupler which comprises the two-sectional weakly parallel-coupled lines with equal phase velocity was designed at W-band. The proposed coupler was fabricated using air-bridge technology to monolithically materialize the uniplanar coupler structure instead of conventional multilayer or wire bonded structure. From the measurements, the coupling coefficient of $2.9{\sim}3.6\;dB$ and the good phase difference of $91.2{\pm}2.9^{\circ}$ were obtained in broad frequency range of $75{\sim}100\;GHz$.

A Design of Wide-band Folded Dual Monopole Antennas (광대역 폴디드 이중 모노폴 안테나 설계)

  • Lee, Hyeon-Jin;Jung, Jin-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.69-75
    • /
    • 2007
  • In this paper, a single plane wide band microstrip antenna for integrated circuit is designed and fabricated. A new configuration for a wide bandwidth is proposed. This antenna consists of two folded microstrip monopoles, which are fed by a coplanar waveguide (CPW). Therefore In this paper is folded terminal part of dual microstrip line for variable reactance value. As a result compared the proposed folded dual microstrip monopole antenna with established dual microstrip monopole antennas, the proposed antenna can widen bandwidth more then about over 1[GHz. The characteristics of the proposed antenna were analyzed by using an FDTD methods. The proposed antenna has $1.98{\sim}4.05GHz$ bandwidth for using ISM, Wibro and DMB band.

Broadband Patch Antenna with the Air-Dielectric for the Human Counting System (휴먼 카운팅 시스템을 위한 공기 유전체 층을 갖는 광대역 패치 안테나)

  • Choi, Hyun-Ho;Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.539-544
    • /
    • 2017
  • In this paper, the broadband patch antenna for human counting systems is designed and fabricated using by the air dielectric substrate. Proposed antenna has a patch structure of the square structure with a 5 mm air layer and the vertical connection between the patch antenna and CPW feeding line is realized the stepped impedance structure. Optimized antenna through a 3D EM simulator is fabricated on a jig by manufacturing an antenna jig using a 3D printer with a size of 16.6 * 16.6 * 5 mm3. Proposed antenna is measured with the maximum gain of 5.71 dBi and the VSWR of below 2:1 at a frequency of 7.2 to 9.8 GHz. Also, a half power beam width characteristic of the antenna is measured $70^{\circ}$.

High Conversion Gain Q-band Active Sub-harmonic Mixer Using GaAs PHEMT

  • Uhm, Won-Young;Lee, Bok-Hyung;Kim, Sung-Chan;Lee, Mun-Kyo;Sul, Woo-Suk;Yi, Sang-Yong;Kim, Yong-Hoh;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, we have designed and fabricated high conversion gain Q-band active sub-harmonic mixers for a receiver of millimeter wave wireless communication systems. The fabricated active sub-harmonic mixer uses 2nd harmonic signals of a low local oscillator (LO) frequency. The fabricated mixer was successfully integrated by using $0.1{\;}\mu\textrm{m}$GaAs pseudomorphic high electron mobility transistors (PHEMTs) and coplanar waveguide (CPW) structures. From the measurement, it shows that maximum conversion gain of 4.8 dB has obtained at a RF frequency of 40 GHz for 10 dBm LO power of 17.5 GHz. Conversion gain from the fabricated sub-harmonic mixer is one of the best reported thus far. And a phase noise of the 2nd harmonic was obtained -90.23 dBc/Hz at 100 kHz offset. The active sub-harmonic mixer also ensure a high degree of isolations, which are -35.8 dB from LO-to-IF and -40.5 dB from LO-to-RF, respectively, at a LO frequency of 17.5 GHz.

Design and fabrication of a Novel 60 GHz GaAs pHEMT Resistive Double Balanced Star MMIC Mixer (새로운 60 GHz 대역 GaAs pHEMT 저항성 이중평형 Star 혼합기 MMIC의 설계 및 제작)

  • 염경환;고두현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.608-618
    • /
    • 2004
  • In this paper, modifying the diode star double balanced mixer of Maas, a novel resistive 60 GHz pHEMT MMIC star mixer is suggested. Due to star configuration, troublesome IF balun for ring configuration FET mixer is not necessary. In addition, the sysematic design method of dual balun through EM simulation is suggested rather than the design by inspection as Maas. The mixer circuit is fabricated as MMIC on CPW base using 0.1 um GaAs pHEMT Library of MINT in Dongguk University. The size is 1.5 ${\times}$ 1.5 $\textrm{mm}^2$ and its performance is adjustable by DC supply. It can be operated as both up and down converters and it shows the conversion loss of about 13∼18 ㏈ over the full V-band frequencies.