• Title/Summary/Keyword: CPU Processing Time

Search Result 332, Processing Time 0.027 seconds

CPU Scheduling with a Round Robin Algorithm Based on an Effective Time Slice

  • Tajwar, Mohammad M.;Pathan, Md. Nuruddin;Hussaini, Latifa;Abubakar, Adamu
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.941-950
    • /
    • 2017
  • The round robin algorithm is regarded as one of the most efficient and effective CPU scheduling techniques in computing. It centres on the processing time required for a CPU to execute available jobs. Although there are other CPU scheduling algorithms based on processing time which use different criteria, the round robin algorithm has gained much popularity due to its optimal time-shared environment. The effectiveness of this algorithm depends strongly on the choice of time quantum. This paper presents a new effective round robin CPU scheduling algorithm. The effectiveness here lies in the fact that the proposed algorithm depends on a dynamically allocated time quantum in each round. Its performance is compared with both traditional and enhanced round robin algorithms, and the findings demonstrate an improved performance in terms of average waiting time, average turnaround time and context switching.

Subsequence Matching Under Time Warping in Time-Series Databases : Observation, Optimization, and Performance Results (시계열 데이터베이스에서 타임 워핑 하의 서브시퀀스 매칭 : 관찰, 최적화, 성능 결과)

  • Kim Man-Soon;Kim Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1385-1398
    • /
    • 2004
  • This paper discusses an effective processing of subsequence matching under time warping in time-series databases. Time warping is a trans-formation that enables finding of sequences with similar patterns even when they are of different lengths. Through a preliminary experiment, we first point out that the performance bottleneck of Naive-Scan, a basic method for processing of subsequence matching under time warping, is on the CPU processing step. Then, we propose a novel method that optimizes the CPU processing step of Naive-Scan. The proposed method maximizes the CPU performance by eliminating all the redundant calculations occurring in computing the time warping distance between the query sequence and data subsequences. We formally prove the proposed method does not incur false dismissals and also is the optimal one for processing Naive-Scan. Also, we discuss the we discuss to apply the proposed method to the post-processing step of LB-Scan and ST-Filter, the previous methods for processing of subsequence matching under time warping. Then, we quantitatively verify the performance improvement ef-fects obtained by the proposed method via extensive experiments. The result shows that the performance of all the three previous methods im-proves by employing the proposed method. Especially, Naive-Scan, which is known to show the worst performance, performs much better than LB-Scan as well as ST-Filter in all cases when it employs the proposed method for CPU processing. This result is so meaningful in that the performance inversion among Nive- Scan, LB-Scan, and ST-Filter has occurred by optimizing the CPU processing step, which is their perform-ance bottleneck.

Development of Real-Time Image Processing System Using GPU (GPU를 이용한 실시간 이미지 프로세싱 시스템)

  • Oh Jae-Hong;Kang Hoon;Lee Ja-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.393-397
    • /
    • 2005
  • When a real-time image processing application is implemented with a general-purpose computer, CPU (Central Processing Unit) is usually heavily loaded and in many cases that CPU alone cannot meet the real-time requirement at all. Most modern computers are equipped with powerful Graphics Processing Units (GPUs) to accelerate graphics operations. There is a trend that the power of GPU outgrows that of CPU. If we take advantage of the powerful GPU for more general operations other than pure graphics operations, the processing time can be reduced. In this study, we will present techniques that apply GPU to general operations such as image processing procedures. Our experiment results show that significant speed-up can be achieved by using GPU.

Development of High-Speed Real-Time Image Signal Processing Unit for Small Infrared Image Tracking Radar (소형 적외선영상 호밍시스템용 고속 실시간 영상신호처리기 개발)

  • Kim, Hong-Rak;Park, Jin-Ho;Kim, Kyoung-Il;Jeon, Hyo-won;Shin, Jung-Sub
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.43-49
    • /
    • 2021
  • A small infrared image homing system is a tracking system that has an infrared image sensor that identifies a target through the day and night infrared image processing of the target on the ground and searches for and detects the target with respect to the main target. This paper describes the development of a board equipped with a high-speed CPU and FPGA (Field Programmable Gate Array) to identify target through real-time image processing by acquiring target information through infrared image. We propose a CPU-FPGA combining architecture for CPU and FPGA selection and video signal processing, and also describe a controller design using FPGA to control infrared sensor.

Enhancement of H.264/AVC Encoding Speed and Reduction of CPU Load through Parallel Programming Based on CUDA (CUDA 기반의 병렬 프로그래밍을 통한 H.264/AVC 부호화 속도 향상 및 CPU 부하 경감)

  • Jang, Eun-Been;Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.858-863
    • /
    • 2010
  • In order to enhance encoding speed in dynamic image encoding using H.264/AVC, reducing the time for motion estimation which takes a large portion of the processing time is very important. An approach using graphics processing unit(GPU) as a coprocessor to assist the central processing unit(CPU) in computing massive data, will be a way to reduce the processing time. In this paper, we present an efficient block-level parallel algorithm for the motion estimation(ME) on a computer unified device architecture(CUDA) platform developed in general-purpose computation on GPU. Experiments are carried out to verify the effectiveness of the proposed algorithm.

Real-Time Object Segmentation in Image Sequences (연속 영상 기반 실시간 객체 분할)

  • Kang, Eui-Seon;Yoo, Seung-Hun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.173-180
    • /
    • 2011
  • This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.

Development of Stand-alone Image Processing Module on ARM CPU Employing Linux OS. (리눅스 OS를 이용한 ARM CPU 기반 독립형 영상처리모듈 개발)

  • Lee, Seok;Moon, Seung-Bin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.38-44
    • /
    • 2003
  • This paper describes the development of stand-alone image processing module on Strong Arm CPU employing an embedded Linux. Stand-alone image Processing module performs various functions such as thresholding, edge detection, and image enhancement of a raw image data in real time. The comparison of execution time between similar PC and developed module shows the satisfactory results. This Paper provides the possibility of applying embedded Linux successfully in industrial devices.

GPU Based Incremental Connected Component Processing in Dynamic Graphs (동적 그래프에서 GPU 기반의 점진적 연결 요소 처리)

  • Kim, Nam-Young;Choi, Do-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.56-68
    • /
    • 2022
  • Recently, as the demand for real-time processing increases, studies on a dynamic graph that changes over time has been actively done. There is a connected components processing algorithm as one of the algorithms for analyzing dynamic graphs. GPUs are suitable for large-scale graph calculations due to their high memory bandwidth and computational performance. However, when computing the connected components of a dynamic graph using the GPU, frequent data exchange occurs between the CPU and the GPU during real graph processing due to the limited memory of the GPU. The proposed scheme utilizes the Weighted-Quick-Union algorithm to process large-scale graphs on the GPU. It supports fast connected components computation by applying the size to the connected component label. It computes the connected component by determining the parts to be recalculated and minimizing the data to be transmitted to the GPU. In addition, we propose a processing structure in which the GPU and the CPU execute asynchronously to reduce the data transfer time between GPU and CPU. We show the excellence of the proposed scheme through performance evaluation using real dataset.

Analysis of Implementing Mobile Heterogeneous Computing for Image Sequence Processing

  • BAEK, Aram;LEE, Kangwoon;KIM, Jae-Gon;CHOI, Haechul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4948-4967
    • /
    • 2017
  • On mobile devices, image sequences are widely used for multimedia applications such as computer vision, video enhancement, and augmented reality. However, the real-time processing of mobile devices is still a challenge because of constraints and demands for higher resolution images. Recently, heterogeneous computing methods that utilize both a central processing unit (CPU) and a graphics processing unit (GPU) have been researched to accelerate the image sequence processing. This paper deals with various optimizing techniques such as parallel processing by the CPU and GPU, distributed processing on the CPU, frame buffer object, and double buffering for parallel and/or distributed tasks. Using the optimizing techniques both individually and combined, several heterogeneous computing structures were implemented and their effectiveness were analyzed. The experimental results show that the heterogeneous computing facilitates executions up to 3.5 times faster than CPU-only processing.

The Need of Cache Partitioning on Shared Cache of Integrated Graphics Processor between CPU and GPU (내장형 GPU 환경에서 CPU-GPU 간의 공유 캐시에서의 캐시 분할 방식의 필요성)

  • Sung, Hanul;Eom, Hyeonsang;Yeom, HeonYoung
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.9
    • /
    • pp.507-512
    • /
    • 2014
  • Recently, Distributed computing processing begins using both CPU(Central processing unit) and GPU(Graphic processing unit) to improve the performance to overcome darksilicon problem which cannot use all of the transistors because of the electric power limitation. There is an integrated graphics processor that CPU and GPU share memory and Last level cache(LLC). But, There is no LLC access rules between CPU and GPU, so if GPU and CPU processes run together at the same time, performance of both processes gets worse because of the contention on the LLC. This Paper gives evidence to prove the need of the Cache Partitioning and is mentioned about the cache partitioning design using page coloring to allocate the L3 Cache space only for the GPU process to guarantee GPU process performance.