• Title/Summary/Keyword: COXs

Search Result 12, Processing Time 0.019 seconds

THE DNA TOPOISMERASE I INHIBITOR $\beta$-LAPACHONE INHIBITS PROLIFERATION AND DOWNREGULATES CYCLOOXYGENASE-2 GENE EXPRESSION IN HUMAN PROSTATE CARCINOMA CELLS

  • Kong, Kyu-Ri;Park, Byung-Tae;Park, Yung-Hyun
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.95-95
    • /
    • 2002
  • Cyclooxygenases (COXs) are key enzymes in the conversion of arachidonic acid into prostanoids, which are involved in cell proliferation and inflammation. Two distinct COXS have been identified: COX-l which is constitutively expressed and COX-2 which is induced by different products such as tumor promoters or growth factors.(omitted)

  • PDF

15-Hydroxyprostaglandin Dehydrogenase Is Associated with the Troglitazone-Induced Promotion of Adipocyte Differentiation in Human Bone Marrow Mesenchymal Stem Cells

  • Noh, Min-Soo;Lee, Soo-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Adipocyte differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs) is not as efficient as that in murine pre-adipocytes when induced by adipogenic agents including insulin, dexamethasone, and 3-isobutyl-1-methylxanthine (IDX condition). Therefore, the promotion of adipocyte differentiation in hBM-MSCs has been used as a cell culture model to evaluate insulin sensitivity for anti-diabetic drugs. In hBM-MSCs, $PPAR{\gamma}$ agonists or sulfonylurea anti-diabetic drugs have been added to IDX conditions to promote adipocyte differentiation. Here we show that troglitazone, a peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) agonist, significantly reduced the levels of anti-adipogenic $PGE_2$ in IDX-conditioned hBM-MSC culture supernatants when compared to $PGE_2$ levels in the absence of $PPAR{\gamma}$ agonist. However, there was no difference in the mRNA levels of cyclooxygenases (COXs) and the activities of COXs and prostaglandin synthases during adipocyte differentiation in hBM-MSCs with or without troglitazone. In hBM-MSCs, troglitazone significantly increased the mRNA level of 15-hydroxyprostaglandin dehydrogenase (HPGD) which can act to decrease $PGE_2$ levels in culture. These results suggest that the role of $PPAR{\gamma}$ activation in promoting adipocyte differentiation in hBM-MSCs is to reduce anti-adipogenic $PGE_2$ levels through the up-regulation of HPGD expression.

Screening of Arachidonic Acid Cascade Related Enzymes Inhibitors from Korean Indigenous Plants (2) (한국 자생식물로부터 아라키돈산 대사계 효소 저해제 검색 (2))

  • 정혜진;문태철;이은경;손건호;김현표;강삼식;배기환;안인파;권동렬
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.69-77
    • /
    • 2003
  • Arachidonic acid (AA), which is stored in membrane glycerophospholipids, is liberated by phospholipase $A_2$ (PLA$_2$) enzymes and is sequentially converted to cyclooxygenases (COXs) and lipoxygenases (LOXs) then to various bioactive PGs, and LTs. In order to find the specific inhibitors of AA metabolism especially PLA$_2$, COX-2, 5-LO and lyso PAF acetyltransferase, 120 Korean residential plants extracts were evaluated for their inhibitory activity on PGD$_2$, LTC$_4$ production from cytokine-induced mouse bone marrow-derived mast cells (BMMC) and arachidonic acid released from phospholipid and PAF production from lyso PAF. From this screening procedure, methanol extract of ten indigenous plant such as Salix gracilistyla, Sedum kamtschaticum, Cirsium chanroenicum, Hypericum ascyron, Astilbe chinensis, Agrimonia pilosa, Aristolochia manshuriensis, Vodia daniellii, Pyrola japonica, Styrax obassia were found to inhibit production of inflammatory mediators in vitro assay system.

Participation of COX-1 and COX-2 in the contractile effect of phenylephrine in prepubescent and old rats

  • Guevara-Balcazar, Gustavo;Ramirez-Sanchez, Israel;Mera-Jimenez, Elvia;Rubio-Gayosso, Ivan;Aguilar-Najera, Maria Eugenia;Castillo-Hernandez, Maria C.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.4
    • /
    • pp.407-413
    • /
    • 2017
  • Vascular reactivity can be influenced by the vascular region, animal age, and pathologies present. Prostaglandins (produced by COX-1 and COX-2) play an important role in the contractile response to phenylephrine in the abdominal aorta of young rats. Although these COXs are found in many tissues, their distribution and role in vascular reactivity are not clear. At a vascular level, they take part in the homeostasis functions involved in many physiological and pathologic processes (e.g., arterial pressure and inflammatory processes). The aim of this study was to analyze changes in the contractile response to phenylephrine of thoracic/abdominal aorta and the coronary artery during aging in rats. Three groups of rats were formed and sacrificed at three distinct ages: prepubescent, young and old adult. The results suggest that there is a higher participation of prostanoids in the contractile effect of phenylephrine in pre-pubescent rats, and a lower participation of the same in old rats. Contrarily, there seems to be a higher participation of prostanoids in the contractile response of the coronary artery of older than pre-pubescent rats. Considering that the changes in the expression of COX-2 were similar for the three age groups and the two tissues tested, and that expression of COX-1 is apparently greater in older rats, COX-1 and COX-2 may lose functionality in relation to their corresponding receptors during aging in rats.

Induction of S Phase Arrest of the Cell Cycle by Piceatannol is Associated with Inhibition of Telomerase Activity in Human Leukemic U937 Cells (Piceatannol에 의한 인체 혈구암세포의 증식 억제 및 telomerase 활성 저하)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.96-102
    • /
    • 2008
  • Piceatannol is a polyphenol that is found in abundant quantities in grapes and wine. Although recent experimental data revealed the anti-cancer potency of piceatannol, the molecular mechanisms underlying the antileukemic activity have not yet been studied in detail. In the present study, we investigated further possible mechanisms by which piceatannol exerts its anti-proliferative action in cultured human leukemia U937 cells. Exposure of U937 cells to piceatannol resulted in growth inhibition and induction of apoptosis as measured by MTT assay and flow cytometry analysis, which was associated with S phase arrest of the cell cycle. Piceatannol treatment markedly inhibited the activity of telomerase, and the levels of human telomerase reverse transcriptase (hTERT) and telomerase-associated protein-1 (TEP-1), main determinants of the telomerase enzymatic activity, were progressively down-regulated by piceatannol treatment in a dose-dependent fashion. However, the levels of cyclooxygenases (COXs) expression and prostaglandin E2 (PGE2) release were not changed in piceatannol-treated U937 cells. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of piceatannol.

Bee Venom-induced Growth Inhibition of Human Lung Cancer Cells was Associated with Inhibition of Prostagladin E2 Production and Telomerase Activity. (인체폐암세포에서 봉독에 의한 prostagladin E2 생성 및 telomerase 활성 저하)

  • Kim, Jong-Hwan;Hwang, Won-Deuk;Kim, Byung-Woo;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.502-507
    • /
    • 2009
  • In modern oriental medicine, bee venom therapy is being used for aqua-acupuncture to relieve pain and to cure inflammatory diseases such as rheumatoid arthritis, osteoarthritis, and gout. Bee venom therapy has been processed and reported in many experimental studies, with regard to its effects on pain alleviation, anti-inflammation, removal of fever, anti-convulsion, suppression of tumor and immunity strengthening, etc., however, its mechanism of action, molecular targeting on prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remains unclear. In this study, we investigated the effect of bee venom on the levels of cyclooxygenases (COXs) and telomere regulatory components of A549 human lung cancer cells. Bee venom-induced anti-proliferative effects of A549 cells were associated with the inhibition of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR), transcription factor c-myc and the activity of telomerase. In addition, bee venom treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of bee venom.

Effect of Gamisamgibopae-tang on the Growth and Apoptosis of A539 and NCI-H460 Human Lung Cancer Cells (A539 및 NCI-H460 인체 폐암세포의 증식 및 apoptosis 유도에 미치는 가미삼기보폐탕의 영향)

  • Kim, Jin-Young;Kim, Hyun-Joong;Jung, Kwang-Sik;Park, Cheol;Choi, Yung-Hyun;Kam, Cheol-Woo;Park, Dong-Il
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.130-148
    • /
    • 2008
  • Objective : This study was designed to investigate the effect of the water extract of Gamisamgibopae-tang(GMSGBPT), an oriental herbal formulation, on the growth of NCI-H460 and A549 human non-small-cell lung cancer cell lines. Methods : Cytotoxicity and cell morphology were evaluated by MTT assay and inverted microscope, respectively. Apoptosis was detected using agarose gel electrophoresis and flow cytometer. The expression levels of mRNAs and proteins of target genes were determined by RT-PCR and western blot analyses, respectively Result and Conclusion : We found that exposure of A549 cells to GMSGBPT resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay, but GMSGBPTdid not affect the growth of NCI-H460 cells. The anti-proliferative effect of GMSGBPT treatment in A549 cells was associated with morphological changes, formation of apoptotic bodies and DNA fragmentation, and flow cytometry analysis confirmed that GMSGBPT treatment increased the populations of apoptotic-sub G1 phase. Growth inhibition and apoptotic cell death by GMSGBPT were connected with a up-regulation of cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) mRNA and protein in a tumor suppressor p53-independent fashion. However GMSGBPT treatment did not affect other growth regulation-related genes such as early growth response-1 (Egr-1), nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1), inducible nitric oxide synthase (iNOS), cyclooxygenases (COXs), telomere-regulatory factors in A549 orNCI-H460 cells. Taken together, these findings partially provide novel insights into the possible molecular mechanism of the anti-cancer activity of GMSGBPT.

  • PDF

Genistein-induced Growth Inhibition was Associated with Inhibition of Cyclooxygenase-2 and Telomerase Activity in Human Cancer Cells. (인체 암세포에서 genistein에 의한 cyclooxygenase-2 및 telomerase의 활성 저하)

  • Kim, Jung-Im;Kim, Seong-Yun;Seo, Min-Jeong;Lim, Hak-Seob;Lee, Young-Choon;Joo, Woo-Hong;Choi, Byung-Tae;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.884-890
    • /
    • 2008
  • Genistein, an isoflavone in soybean products, is a potential chemopreventive agent against various types of cancer. There are several studies documenting molecular alterations leading to cell cycle arrest at G2/M phase and induction of apoptosis; however, its mechanism of action and its molecular targets on the prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remain unclear. In this study, we investigated the effect of genistein on the levels of cyclooxygenases (COXs) and telomere regulatory components of several human cancer cell lines (T24, human bladder carcinoma cells; U937, human leukemic cells; AGS, human stomach adenocarcinoma cells and SK-MEL-2, human skin melanoma cells). Genistein treatment resulted in the inhibition of cancer cell proliferation in a concentration-dependent manner. It was found that genistein treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Genistein treatment also partly inhibited the levels of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR) and telomerase-associated protein (TEP)-1, and the activity of telomerase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of genistein.

Inhibition of Cyclooxygenase-2 Activity and Prostaglandin E2 Production through Down-regulation of NF-κB Activity by the Extracts of Fermented Beans (발효 콩의 NF-κB 활성 억제를 통한 cyclooxgenase-2 활성과 prostaglandin E2 생성 억제)

  • Lee, Hye-Hyeon;Park, Cheol;Kim, Min-Jeong;Seo, Min-Jeong;Choi, Sung-Hyun;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.388-395
    • /
    • 2010
  • Cyclooxygenase (COX)-2 is generally known as an inducible enzyme, and it produces arachidonic acid to prostaglandin $E_2$ ($PGE_2$), which has been demonstrated to play a critical role in inflammation. In the present study, we investigated the effects of the extracts of fermented beans including soybean (FS), black agabean (FBA) and yellow agabean (FYA), on the expression of COXs and production of $PGE_2$ in U937 human promonocytic cells. Treatment of phorbol 12-myristate 13-acetate (PMA) significantly induced pro-inflammatory mediators such as COX-2 expression and $PGE_2$ production, whereas the levels of COX-1 remained unchanged. However, pre-treatment with FS, FBA and FYA significantly decreased PMA-induced COX-2 protein as well as mRNA, which is associated with inhibition of $PGE_2$ production. Moreover, FS, FBA and FYA markedly prevented the increase of nuclear translocation of nuclear factor kappa B (NF-${\kappa}B$) p65 by PMA. Our data indicate that the extracts of fermented beans exhibits anti-inflammatory properties by suppressing the transcription of pro-inflammatory cytokine genes through the NF-${\kappa}B$ signaling pathway.